

MAN Energy Solutions

All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way.
Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.
If this document is delivered in another language than English and doubts arise concerning the translation, the English text shall prevail.

Contents

					\sim
$M\Delta M$	R&W	two-stroke	nronulsion	engines	h

MAN B&W two-stroke propulsion systems 108

MAN four-stroke propulsion engines 118

MAN four-stroke marine GenSets 154

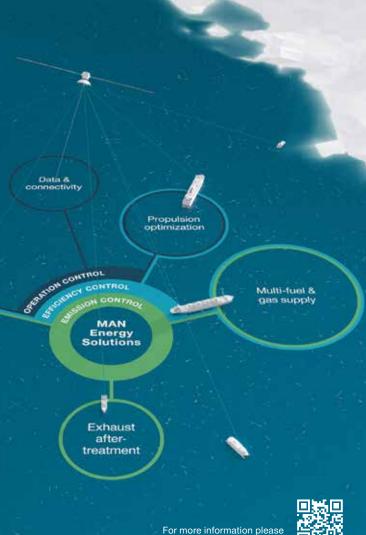
S.E.M.T. Pielstick four-stroke propulsion engines 186

MAN four-stroke propulsion systems 192

MAN turbochargers and exhaust gas systems 208

MAN PrimeServ 222

Contacts 228


MAN ECO CONTROL

Rely on our solutions to optimize your performance

We offer a range of technologies and services designed to enhance the sustainability of your ships. Our portfolio of especially developed solutions helps you lower emissions, increase efficiency and make operation more flexible and reliable.

consult our website.

MAN Energy Solutions Tier II and Tier III engine programme

The two-stroke engines in this programme are either:

- Tier II engines complying with IMO Tier II
- Tier III engines complying with Tier II when operated in Tier II mode and with Tier III when operated in Tier III mode

Latest updates on engine development and options are available at: www. marine.man-es.com → Two-Stroke → Market Update Notes (MUN)

Engine type designation

To ensure that the engine designation describes the engine with regard to the fuel injection concept and applied Tier III technologies, the engine type designation also includes these concepts as described below (full designation, see page 18):

```
8S70ME-C10.5-GI-EcoEGR

Tier III technology (EcoEGR, EGRBP, EGRTC, HPSCR, LPSCR)
No designation = Tier II

Fuel injection concept (GI, GIE, LGIM, LGIP)
No designation = MDO/HFO
```

Tier III technologies and fuel injection concepts are explained in detail on page 12 (GI and LGI Dual Fuel Engines) and page 13 (Tier III Technologies).

ME-C and ME-CR engines

The electronic control of the ME-C and ME-CR engines includes flexible control of the cylinder process, i.e. fuel injection timing and actuation of exhaust valves, starting valves and cylinder lubrication. The ME-C fuel injection concept is based on pressure boosting at the individual cylinders whereas the ME-CR engine is using a common rail fuel injection system.

ME-B engines

ME-B engines use electronically controlled pressure boosters for the fuel injection whereas actuation of the exhaust valves is camshaft operated, but with electronically controlled variable closing timing.

CEAS and turbocharger selection

CEAS and TCS applications include all available Tier II, Tier III technologies and dual fuel options. These applications include all available engines and variants, and specifications can be further investigated with respect to basic data essential for the design and dimensioning of a ship's engine room (CEAS) and applicable turbochargers (TCS).

CEAS and TCS are available at: www.marine.man-es.com → Two-Stroke under CEAS Engine Calculations and Turbocharger Selection.

In CEAS and TCS, all engines in this programme can be selected from the category 'Official Catalogue'.

Earlier versions of this engine programme mention additional engine types. Some of these are still available in CEAS and TCS under the category 'Replaced Catalogue'. New development will only be implemented in these designs to the extent considered necessary based on service experience. New efficiency enhancing features will not be available on older engine types.

Engine power

The engine brake power is stated in kW. The power values stated in the tables are available up to tropical conditions at sea level, i.e.:

- turbocharger inlet air temperature 45°C
- turbocharger inlet air pressure 1,000 mbar
- cooling water (sea/fresh) temperature 32/36°C

Specific fuel oil consumption (SFOC)

The figures in the two-stroke chapter represent the values obtained when the engine and turbocharger are matched to the lowest possible SFOC values while fulfilling the IMO NO_X Tier II or Tier III emission limits.

The SFOC figures are given in g/kWh and are based on the use of a fuel oil with a lower calorific value (LCV) equal to 42,700 kJ/kg at ISO conditions:

- turbocharger inlet air temperature 25°C
- turbocharger inlet air pressure 1,000 mbar
- cooling water temperature 25°C

Most commercially available HFOs with a viscosity below 700 cSt at 50°C can be used.

Tolerances

The energy efficiency design index (EEDI) has increased focus on part-load SFOC. Therefore, we offer the option of selecting the SFOC guarantee at a load point in the range from 50% to 100%. It is recommended that the SFOC guarantee point should be limited to the range 50% to 85% for part-load or low-load tuning methods.

When choosing an SFOC guarantee at or below 100%, the tolerances, adjustment and calibration at 100% will affect an engine running at the lower SFOC guarantee load point. This includes tolerances on measurement equipment, engine process control and turbocharger performance.

Consequently, SFOC guarantee tolerances are as follows:

- 5% tolerance for 100-85% engine load
- 6% tolerance for <85-65% engine load
- 7% tolerance for <65-50% engine load

Please note that the SFOC guarantee can only be given in one load point for Tier II engines. For Tier III engines see page 13.

Turbocharging system

Two-stroke engines can be delivered with MAN, ABB or MHI turbochargers as standard

The SFOC figures given in the two-stroke chapter are based on turbocharging with the best possible turbocharging efficiency generally available, which means 67% for all engines with 45-cm bore and larger, and 64% for engine bores smaller than 45 cm. Both efficiency figures refer to 100% SMCR.

There are exceptions to this rule. Both S40ME-C9.5 and S35ME-CR9.7-GI are now standard high-efficiency applications offering all Tier II standard tunings and all Tier III options requiring a high-efficiency turbocharger.

The S35ME-B9.7 is also available as high-efficiency applications offered

with high-load tuning and Tier III options with conventional-efficiency turbocharging.

Only engine specifications for which an applicable high-efficiency turbocharger is available are subject to firm order.

All Tier II engines with high-efficiency (67%) turbochargers can be ordered with lower (conventional) turbocharging efficiency. Utilising this possibility will result in higher exhaust gas temperatures, lower exhaust gas amounts, and a slight change in SFOC. It is not possible to apply tuning methods (part- or low-load) when making such a conversion.

Fuel consumption and optimisation possibilities for Tier II engines

Various optimisation possibilities for improved part-load and low-load SFOC are available for the MAN B&W type engines. High-load optimisation is for best possible SFOC at 100% engine load.

Optimisation of SFOC in the part-load range (50-85%) or low-load range (25-70%) requires selection of the EGB (exhaust gas bypass) tuning method.

Also high-pressure tuning (HPT) is available on request for ME-C engines.

Engine Process Tuning (EPT) tuning is available for G95ME-C10.5, G80ME-C10.5 and G60ME-C10.5. EPT uses engine control process parameters to improve part/low load SFOC.

The tuning methods mentioned are available for all SMCR points, but cannot be combined. The SFOC reduction potential of each tuning method at L_1 rating can be seen on each individual engine page.

In cases where part-load or low-load EGB tuning is applied, and a higher exhaust gas temperature is needed, a solution exists for additional automatic control of the EGB, the so-called economiser energy control (EEC).

Forcing an open EGB at loads where the EGB is normally closed results in a higher exhaust gas temperature, but with an SFOC penalty. Calculations with this feature are made on request.

GI and LGI dual fuel engines

This engine programme includes a number of engines designed for gas fuel (GI engines) and liquid gas fuel (LGI engines) operation.

Fuel	Fuel designation	LCV [kJ/kg]
Methane	GI	50,000
Ethane	GIE	47,500
Methanol	LGIM	19,900
LPG*	LGIP	46,000

^{*}LPG is a mixture of liquid propane and butane.

In this engine programme, GI figures are included for engines where GI is applicable. As examples, figures for GIE and LGIP are included for S60ME-C10.5 and G60ME-C10.5 engines, and figures for GIE and LGIM are included for the G50ME-C9.6 engine (see pages 94-107).

In dual fuel mode, the pilot oil energy fraction [%] amounts to 1.5% for GI and GIE, 3% for LGIP and 5% for LGIM of L_1 rating

GI and GIE engines are also available in fuel oil mode optimised versions where the pilot oil energy fraction amounts to 3.0% of L_1 rating.

The following fuel consumption figures are shown in the tables for dual fuel engines:

- dual fuel mode with distribution of specific gas consumption (SGC) and specific pilot oil consumption (SPOC)
- fuel oil mode

All types of GI engines can operate with fuel sharing, also referred to as specified dual fuel (SDF) operation, where the ratio between pilot fuel oil and gas fuel can be selected according to preset values.

Guarantee figures for dual fuel engines are given for heat rate, which has the same tolerances as SFOC guarantees, i.e. see page 10.

Heat rate is defined as follows (example for methane as dual fuel): Heat rate $(kJ/kWh) = SGC (g/kWh) \times 50 kJ/g + SPOC (g/kWh) \times 42.7 kJ/g$ Distribution between SGC and SPOC as well as the heat rate over the load range are available in the CEAS report.

Please note that dual fuel engines must have cylinder lubrication systems capable of supplying both low-BN lubricating oils and high-BN lubricating oils.

Greenhouse gas emissions

IMO has developed the EEDI (energy efficiency design index) with CO $_2$ as the only greenhouse gas (GHG) emission accounted for. However, IMO is evaluating the possibilities for developing legislation on other GHGs than CO $_2$. Especially methane is in focus, as it is a very strong GHG and, accordingly, IMO is evaluating the possibilities for introducing legislation on methane slip with short notice as a first measure. In order to be prepared for possible legislation on methane emissions, especially from GI engines, MAN Energy Solutions will, for the complete two-stroke engine programme, be prepared to guarantee a maximum methane slip of 0.35 g/kWh.

Tier III technologies

To ensure compliance with IMO Tier III regulations, EGR or SCR NO_X reduction technology must be selected. The preferred technology depends on market demands, engine size, other requirements and operational pattern.

See our Emission Project Guide for more detailed descriptions of these technologies at www.marine.man-es.com → Two-Stroke → Project Guides → Other Guides → Emission Project Guide

All Tier III engines have at least two operating modes:

- Tier III mode fulfilling the IMO Tier III regulations
- Tier II mode fulfilling the IMO Tier II regulations

Tier III technologies are designed for either low-sulphur fuels (<0.1%) or high-sulphur fuels (>0.5% and <3.5%) in Tier III operation. In Tier II operation, the engine is in all cases capable of using fuels with a high sulphur content. The fuel sulphur content must be selected at engine order as it impacts the engine design.

Fuel consumption guarantees can be given for engines for both Tier II and Tier III mode.

EGR

Two EGR-matching concepts are available depending on engine bore:

- EGRTC: T/C cut-out matching for ME-C engines with bores ≥ 80 cm and more than one turbocharger applied
- EGRBP: Bypass matching for ME-C engines with bores ≤ 70 cm and one high efficiency turbocharger applied.

EGR operation is also possible for dual fuel engines, except GIE.

SCR is recommended for the small bore ME-B engines. However, if EGR is the preferred Tier III technology for an ME-B engine, please contact MAN Energy Solutions.

EcoEGR

EcoEGR is an SFOC optimised version of the EGRBP system available on all ME-C engines with high-efficiency turbochargers. Compared to the standard EGRBP system the EcoEGR engines operate with 10–15% recirculation in Tier II mode and with slightly increased recirculation in Tier III mode. For EcoEGR engines running on low-sulphur fuels (<0.5 %S), considerable overall savings are obtained. For high-sulphur fuels the overall benefits must be calculated on a case-to-case basis.

EcoEGR operation is also possible for dual fuel engines, except GIE.

If EcoEGR is the preferred Tier III technology on ME-B engines, please contact MAN Energy Solutions.

SCR

Two SCR concepts are available:

- HPSCR: High-pressure SCR with reactor installed upstream the turbocharger(s)
- LPSCR: Low-pressure SCR with reactor installed downstream the turbocharger(s)

SCR operation applies to ME-C and ME-B engines, including engine types with dual fuel. For some large-bore engines (bore ≥ 90 cm) with a high cylinder number, HPSCR is only available on special request.

The SCR system must be supplied by an approved supplier.

Application of high-sulphur fuels and SO_x scrubbers

All two-stroke engines in the MAN Energy Solutions marine engine programme are compatible with $SO_{\rm X}$ scrubbers.

A SO_x scrubber installation will increase the back pressure, thereby affecting engine performance. Accordingly, we require that a SO_x scrubber installation does not increase the back pressure by more than 30 mbar at SMCR.

CEAS is updated with the SO_x scrubber options available.

Fuels after 2020

From 1 January 2020, the global sulphur content for marine fuels must not exceed 0.5%. To ensure compliant operation, one of the following methods must be used:

- Use a compliant fuel:
- Global: max. 0.5% Sulphur
- ECA: max. 0.1% sulphur
- Use methane, ethane, methanol or LPG together with compliant pilot fuel.
- Use a high-sulphur fuel in combination with a SO_x scrubber to obtain an exhaust gas SO_x level equivalent to operation on a compliant fuel.

The fuel specification must be selected at engine order as it impacts the engine design.

Waste heat recovery systems

Waste heat recovery systems (WHRS) are available on request for both Tier II and Tier III engines with high-efficiency turbochargers. Contact MAN Energy Solutions for further information.

Lubricating oil consumption

The system oil consumption varies according to engine sizes and, operational and maintenance patterns.

Specific Cylinder Oil Consumption

Alpha ACC (Adaptive Cylinder-oil Control) is the lubricating mode for MAN B&W two-stroke engines that involves lube dosing proportional to the engine load and to the sulphur content in the fuel being burned.

Our general strategy is:

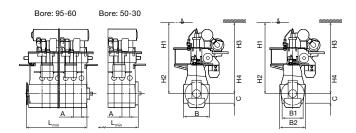
- Use low-BN oil for low-sulphur fuels
- Use high-BN oil for high-sulphur fuels

Dosage:

- Low-sulphur fuels: min. 0.6 g/kWh
- High-sulphur fuels: typically 0.3 g/kWh × %S for a 100 BN oil

Our Service Letters SL2014-587 and SL2014-593 offer further information: www.marine.man-es.com → Two-Stroke → Service Letters → SL2014-587 and SL2014-593

Extent of delivery


The final and binding extent of delivery of MAN B&W two-stroke engines is to be supplied by our licensee, the engine maker, who should be contacted in order to determine the execution for the actual project.

To facilitate negotiations between the yard, the engine maker and the customer, a set of guiding 'Extent of Delivery' (EoD) forms are available in which MAN Energy Solutions's recommended basic and optional executions are specified.

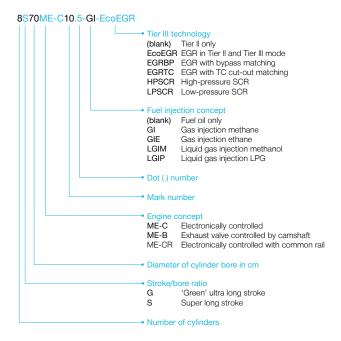
The licensees may select a different extent of delivery as their standard.

Engine dimensions

The minimum length L_{min} is stated from the aft end of the crankshaft to the fore end of the engine.

L_{min} Minimum length of engine

- A Cylinder distance
- B Bedplate width
- B1 Bedplate width at foot flange
- B2 Bedplate width at top flange
- C Crankshaft to underside of foot flange
- H1 Normal lifting procedure
- H2 Reduced height lifting procedure
- H3 Reduced height lifting procedure with MAN B&W double-jib crane
- H4 Normal lifting procedure with MAN B&W double-jib crane


Dry masses

Dry masses are stated in metric tonnes for engines with MAN turbocharger(s) and a standard turning wheel. Figures will vary depending on the design and options chosen, e.g. moment compensators, tuning wheel, etc.

Dry masses for Tier III engines cover components directly integrated on the engine.

Indicated values are for guidance only and are not binding.

Engine type designation

For further usefull information scan the QR codes:

Two-stroke project guides

CEAS Engine

Turbocharger Selection

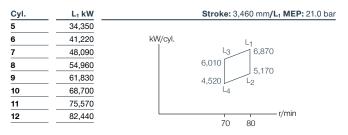
Future-proof your investments

MAN Energy Solutions
Future in the making

MAN B&W ME-LGIP engine

The 2020 SO_x regulations throw the world of ocean transport into uncertainty. Our innovative dual-fuel LPG engine lets you de-risk shipbuilding investments and take back control.

By switching to LPG, you stay compliant while retaining the flexibility to take advantage of optimal fuel prices in the future. LPG also offers lower total cost of ownership, giving you a valuable edge in a competitive market.


Power into the future with confidence

www.man-es.com

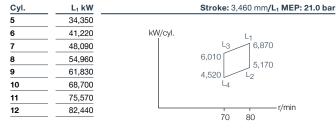
MAN B&W G95ME-C10.5

Fuel oil

MAN B&W G95ME-C10.5

L₁ SFOC [g/kWh]			
Opt. load range	50%	75%	100%
High-load	159.5	158.5	163.0
Part-load EPT	157.5	157.0	165.5
Low-load EPT	155.5	158.0	165.5

GI (Methane)


MAN B&W G95ME-C10.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	129.5+3.9/159.5	129.5+2.9/161.0	136.3+2.4/168.0	

Note: Also available for GIE and LGIP, see page 12.

Tier III

MAN B&W G95ME-C10.5

Fuel oil

MAN B&W G95ME-C10.5-EcoEGR

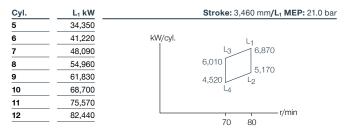
L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	152.5	153.5	161.0
Tier III mode	161.5	160.5	165.0

MAN B&W G95ME-C10.5-EGRTC

L₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	155.5	158.0	165.0
Tier III mode	161.5	161.5	167.0

MAN B&W G95ME-C10.5-HPSCR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	155.5	158.0	165.5
Tier III mode	157.0	159.0	166.0


MAN B&W G95ME-C10.5-LPSCR

L ₁ SFOC [g/kWh]				
Tier II mode	155.5	158.0	165.5	
Tier III mode	156.5	159.0	166.5	

^{*} Available on request for HPSCR.

MAN B&W G95ME-C10.5

GI (Methane)

MAN B&W G95ME-C10.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	126.9+3.9/152.5	128.5+3.0/156.0	135.4+2.5/166.0	
Tier III mode	134.6+3.9/161.5	134.5+3.0/163.0	138.8+2.5/170.0	

MAN B&W G95ME-C10.5-GI-EGRTC

L₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	129.4+4.0/155.5	132.4+3.0/160.5	138.8+2.5/170.0	
Tier III mode	134.5+4.0/161.5	135.4+3.0/164.0	140.5+2.5/172.0	

MAN B&W G95ME-C10.5-GI-HPSCR

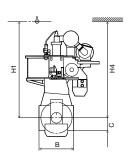
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	129.4+4.0/155.5	132.5+3.0/160.5	139.2+2.5/170.5	
Tier III mode	130.7+4.0/157.0	133.3+3.0/161.5	139.6+2.5/171.0	

MAN B&W G95ME-C10.5-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	129.4+4.0/155.5	132.5+3.0/160.5	139.2+2.5/170.5
Tier III mode	130.3+4.0/156.5	133.3+3.0/161.5	140.1+2.5/171.5

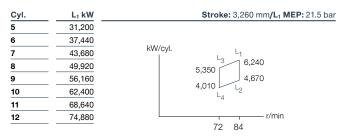
^{*} Available on request for HPSCR.


Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.


Tier II Tier III

MAN B&W G95ME-C10.5

-	ne	CIT	ica	111	۱ns


Dimens	ions:		Α		3	С		H1	H4
mm		1	,574	5,380)	2,060	16,1	00	15,900
Cyl. dis	tance		5-9 cyl.		10 cyl.		11 cyl.		12 cyl.
mm			1,574	1-	6: 1,574	1-	6: 1,574	1-	6: 1,574
mm				7-1	0: 1,670	7-1	1: 1,670	7-1	2: 1,670
Cylinde	rs:	5	6	7	8	9	10	11	12
L _{min}	mm	11,468	13,042	14,616	16,190	17,804	19,779	21,489	23,159
Dry mas									
Tier II	t	1,090	1,260	1,445	1,640	1,840	2,030	2,230	2,425
Tier III (added)								
EcoEGF	R t	11	13	14	15	29	29	31	33
EGR	t	11	13	14	15	29	29	31	33
HP SCR	t t	10	15	15	15				
LP SCR	t	-	-	-	-	-	-	-	
Dual fue	el (adde	ed)							
GI	t	8	9	11	12	13	15	16	17

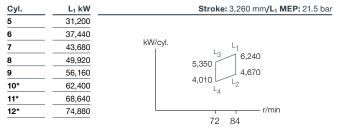
MAN B&W G90ME-C10.5

Fuel oil

MAN B&W G90ME-C10.5

L₁ SFOC [g/kWh]			
Opt. load range	50%	75%	100%
High-load	161.5	160.5	165.0
Part-load EGB	159.5	159.0	167.5
Low-load EGB	157.5	160.0	167.5

GI (Methane)


MAN B&W G90ME-C10.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	131.2+3.9/161.5	131.2+3.0/163.0	138.0+2.5/170.0	

Note: Also available for GIE and LGIP, see page 12.

Tier III

MAN B&W G90ME-C10.5

Fuel oil

MAN B&W G90ME-C10.5-EcoEGR

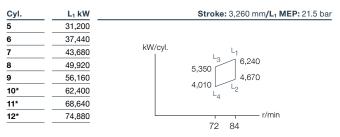
L₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	154.5	155.5	163.0
Tier III mode	163.5	162.5	167.0

MAN B&W G90ME-C10.5-EGRTC

L₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	157.5	160.0	167.0
Tier III mode	163.5	163.5	169.0

MAN B&W G90ME-C10.5-HPSCR

L ₁ SFOC [g/kWh]					
	50%	75%	100%		
Tier II mode	157.5	160.0	167.5		
Tier III mode	159.0	161.0	168.0		


MAN B&W G90ME-C10.5-LPSCR

L ₁ SFOC [g/kWh]				
Tier II mode	157.5	160.0	167.5	
Tier III mode	158.5	161.0	168.5	

^{*} Available on request for HPSCR.

MAN B&W G90ME-C10.5

GI (Methane)

MAN B&W G90ME-C10.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	128.5+4.0/154.5	130.2+3.0/158.0	137.1+2.5/168.0	
Tier III mode	136.2+4.0/163.5	136.2+3.0/165.0	140.5+2.5/172.0	

MAN B&W G90ME-C10.5-GI-EGRTC

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	131.1+4.0/157.5	134.1+3.1/162.5	140.5+2.5/172.0
Tier III mode	136.2+4.0/163.5	137.1+3.1/166.0	142.2+2.5/174.0

MAN B&W G90MF-C10 5-GI-HPSCR

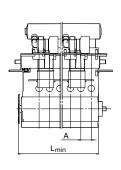
MAR BOTH GOOD OF THE COTT				
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	131.1+4.0/157.5	134.1+3.1/162.5	140.9+2.5/172.5	
Tier III mode	132.3+4.0/159.0	135.0+3.1/163.5	141.3+2.5/173.0	

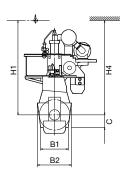
MAN B&W G95ME-C10.5-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	131.1+4.0/157.5	134.1+3.1/162.5	140.9+2.5/172.5		
Tier III mode	131.9+4.0/158.5	135.0+3.1/163.5	141.7+2.5/173.5		

^{*} Available on request for HPSCR.

Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.


MAN B&W G90ME-C10.5


Specifications

GI

Dimensio	ns:		Α	B1	B2		С	H1	H4
mm		1,49	90 (5,110	5,034	1,88	35 14	1,425	13,975
Cylinders	s:	5	6	7	8	9	10	11	12
L _{min}	mm	10,740	12,040	12,855	14,345*	15,835*	18,040	19,530	21,020
Dry mass	s								
Tier II	t	892	1,034	1,162	1,316*	1,477*	1,619	1,786	1,915
Tier III (ad	dded)								
EcoEGR	t	11	13	14	15	29	29	31	33
EGR	t	11	13	14	15	29	29	31	33
HPSCR	t	7	10	15	15	15			
	t								

^{* 8-9-}cylinder engines can be ordered with either divided or undivided crankshaft. Data is given for undivided crankshaft.

MAN B&W S90ME-C10.5

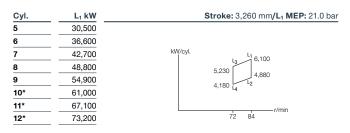
Cyl.	L ₁ kW	Stroke: 3,260 mm/L ₁ MEP: 21.0 bar
5	30,500	
6	36,600	
7	42,700	kW/cyl.
8	48,800	5 220
9	54,900	4,180
10	61,000	4,100 L ₄
11	67,100	r/min
12	73,200	72 84

Fuel oil

MAN B&W S90ME-C10.5

L₁ SFOC [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	162.5	161.5	166.0	
Part-load EGB	160.5	160.0	168.5	
Low-load EGB	158.5	161.0	168.5	

GI (Methane)


MAN B&W S90ME-C10.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]						
Opt. load range 50% 75% 1						
High-load	132.0+3.9/162.5	132.0+3.0/164.0	138.8+2.5/171.0			

Note: Also available for GIE and LGIP, see page 12.

Tier III

MAN B&W S90ME-C10.5

Fuel oil

MAN B&W S90ME-C10.5-EcoEGR

L₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	155.5	156.5	164.0	
Tier III mode	164.5	163.5	168.0	

MAN B&W S90ME-C10.5-EGRTC

L ₁ SFOC [g/kWh]					
	50%	75%	100%		
Tier II mode	158.5	161.0	168.0		
Tier III mode	164.5	164.5	170.0		

MAN B&W S90ME-C10.5-HPSCR

L ₁ SFOC [g/kWh]					
	50%	75%	100%		
Tier II mode	158.5	161.0	168.5		
Tier III mode	160.0	162.0	169.0		

MAN B&W S90ME-C10.5-LPSCR

L ₁ SFOC [g/kWh]					
	50%	75%	100%		
Tier II mode	158.5	161.0	168.5		
Tier III mode	159.5	162.0	169.5		

^{*} Available on request for HPSCR.

MAN B&W S90ME-C10.5

Cyl.	L ₁ kW	Stroke: 3,260 mm/L ₁ MEP: 21.0 bar
5	30,500	
6	36,600	
7	42,700	kW/cyl.
8	48,800	5 220
9	54,900	4,180
10*	61,000	4,100 L ₄
11*	67,100	r/min
12*	73,200	72 84

GI (Methane)

MAN B&W S90ME-C10.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	129.4+4.0/155.5	131.0+3.1/159.0	137.9+2.5/169.0		
Tier III mode	137.1+4.0/164.5	137.0+3.1/166.0	141.3+2.5/173.0		

MAN B&W S90ME-C10.5-GI-EGRTC

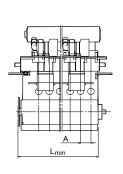
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	131.9+4.0/158.5	135.0+3.1/163.5	141.3+2.6/173.0		
Tier III mode	137.0+4.0/164.5	138.0+3.1/167.0	143.0+2.6/175.0		

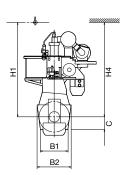
MAN B&W S90MF-C10 5-GI-HPSCR

WAIT DOW GOOME	MAN BAW GOOME-GIO.G-GI-III GOIT					
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]						
	50%	75%	100%			
Tier II mode	131.9+4.0/158.5	135.0+3.1/163.5	141.7+2.5/173.5			
Tier III mode	133.2+4.0/160.0	135.8+3.1/164.5	142.2+2.5/174.0			

MAN B&W S90ME-C10.5-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	131.9+4.0/158.5	135.0+3.1/163.5	141.7+2.5/173.5	
Tier III mode	132.8+4.0/159.5	135.8+3.1/164.5	142.6+2.5/174.5	


^{*} Available on request for HPSCR.


Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.

MAN B&W S90ME-C10.5

-	n	Δ	C	ıtı	്മ	Ť١	0	ns

Dimensi	ons:		Α	B1	B2		С	H1	H4
mm		1,59	90	5,160	5,450	1,90	00 1	5,000	14,875
Cylinder	s:	5	6	7	8	9	10	11	12
L _{min}	mm	10,312	11,902	13,492	16,135	17,725	19,315	20,905	22,495
Dry mas	s								
Tier II	t	953	1,104	1,255	1,446	1,626	1,771	1,942	2,088
Tier III (a	dded)								
EcoEGR	t	9	12	13	14	14	26	29	31
EGR	t	9	12	13	14	14	26	29	31
HPSCR	t	7	10	15	15	15			
LPSCR	t	_	-	-	-	-	-	-	
Dual fue	l (adde	ed)							

MAN B&W G80ME-C10.5

- r/min

Cyl.	L ₁ kW	Stroke: 3,720 mm/L ₁ MEP: 21.0 bar
6	28,260	
7	32,970	
8	37,680	kW/cyl. L ₁ 4,710
9	42,390	3,800 3,550 2,860 4

Fuel oil

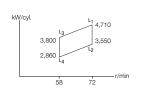
MAN B&W G80ME-C10.5

L ₁ SFOC [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	160.5	159.5	164.0	
Part-load EPT	158.5	158.0	166.5	
Low-load EPT	156.5	159.0	166.5	

GI (Methane)

MAN B&W G80ME-C10.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
Opt. load range	50%	75%	100%		
High-load	130.3+3.9/160.5	130.4+3.0/162.0	137.1+2.4/169.0		


Note: Also available for GIE and LGIP, see page 12

Tier III

MAN B&W G80ME-C10.5

Cyl.	L ₁ kW
6	28,260
7	32,970
8	37,680
9	42,390

Fuel oil

MAN B&W G80ME-C10.5-EcoEGR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	153.5	154.5	162.0
Tier III mode	162.5	161.5	166.0

MAN B&W G80ME-C10.5-EGRTC

L ₁	SFOC	[g/kWh]

	50%	75%	100%
Tier II mode	156.5	159.0	166.0
Tier III mode	162.5	162.5	168.0

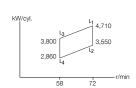
MAN B&W G80ME-C10.5-HPSCR

SF	OC	ſα	/kV	Vh1

	50%	75%	100%
Tier II mode	156.5	159.0	166.5
Tier III mode	158.0	160.0	167.0

MAN B&W G80ME-C10.5-LPSCR

l	SF	ററ	ľ'n	/k\	Nh1


107	50%	75%	100%
Tier II mode	156.5	159.0	166.5
Tier III mode	157.5	160.0	167.5

MAN B&W G80ME-C10.5

Cyl.	L ₁ kW
6	28,260
7	32,970
8	37,680
9	42,390

GI (Methane)

MAN B&W G80ME-C10.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	127.7+4.0/153.5	129.5+3.0/157.0	136.2+2.5/167.0		
Tier III mode	135.4+4.0/162.5	135.5+3.0/164.0	139.6+2.5/171.0		

MAN B&W G80ME-C10.5-GI-EGRTC

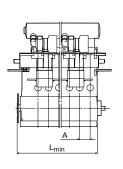
L₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	130.2+4.0/156.5	133.3+3.1/161.5	139.6+2.5/171.0		
Tier III mode	135.4+4.0/162.5	136.3+3.1/165.0	141.3+2.5/173.0		

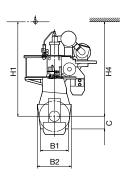
MAN B&W G80ME-C10.5-GI-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	130.2+4.0/156.5	133.3+3.0/161.5	140.1+2.5/171.5		
Tier III mode	131.5+4.0/158.0	134.1+3.0/162.5	140.5+2.5/172.0		

MAN B&W G80ME-C10.5-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	130.2+4.0/156.5	133.3+3.0/161.5	140.0+2.5/171.5		
Tier III mode	131.1+4.0/157.5	134.1+3.0/162.5	140.9+2.5/172.5		


Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.


MAN B&W G80ME-C10.5

_				
Spe	CIT	ıcat	IOI	าร

Dimension	ns:	Α	B1 B2	С	H1 H4
mm		-		-	
Cylinders	:	6	7	8	9
L _{min}	mm	-	-	-	-
Dry mass					
Tier II	t	898	1,002	1,115*	1,283
Tier III (ad	ded)				
EcoEGR	t	11	12	13	14
EGR	t	11	12	13	14
HPSCR	t	6	10	10	15
LPSCR	t	-	-	-	-
Dual fuel (added)				
GI	t	7	8	9	9

 $^{^{\}star}\,$ Dry mass and cylinder L_{min} are with undivided crankshaft and chain in aft.

MAN B&W S80ME-C9.5

Cyl.	L ₁ kW	Stroke: 3,450 mm/L ₁ MEP: 20.0 bar
6	27,060	
7	31,570	
8	36,080	kW/cyl.
9	40,590	4,160 3,330 4 1,510 3,610 3,330 72 78 r/min

Fuel oil

MAN B&W S80ME-C9.5

L ₁ SFOC [g/kWh]			
Opt. load range	50%	75%	100%
High-load	164.5	162.0	166.0
Part-load EGB	161.5	160.5	167.5
Low-load EGB	159.5	161.5	167.5

GI (Methane)

MAN B&W S80ME-C9.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
Opt. load range	50%	75%	100%
High-load	133.7+3.9/164.5	132.5+3.0/164.5	138.8+2.5/171.0

Note: Also available for GIE and LGIP, see page 12.

MAN B&W S80ME-C9.5

--- r/min

 Cyl.
 L₁ kW
 Stroke: 3,450 mm/L₁ MEP: 20.0 bar

 6
 27,060

 7
 31,570

 8
 36,080

 9
 40,590

kW/cyl.
4,160
3,330
4,510
3,610

Fuel oil

MAN B&W S80ME-C9.5-EcoEGR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	157.5	157.0	164.0
Tier III mode	166.5	164.0	168.0

MAN B&W S80ME-C9.5-EGRTC

L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	159.5	161.5	167.0	
Tier III mode	166.5	165.0	170.0	

MAN B&W S80ME-C9.5-HPSCR

L ₁ SFOC [g/kWh]					
	50%	75%	100%		
Tier II mode	159.5	161.5	167.5		
Tier III mode	161.0	162.5	168.0		

MAN B&W S80ME-C9.5-LPSCR

L ₁ SFOC [g/kWh]					
	50%	75%	100%		
Tier II mode	159.5	161.5	167.5		
Tier III mode	160.5	162.5	168.5		

MAN B&W S80ME-C9.5

Cyl.	L ₁ kW	Stroke: 3,450 mm/L ₁ MEP: 20.0 bar
6	27,060	
7	31,570	
8	36,080	kW/cyl.
9	40,590	4,160 3,330 4 12 3,610 72 72 78

GI (Methane)

MAN B&W S80ME-C9.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	131.1+4.0/157.5	131.5+3.1/159.5	137.9+2.5/169.0	
Tier III mode	138.8+4.0/166.5	137.4+3.1/166.5	141.3+2.5/173.0	

MAN B&W S80ME-C9.5-GI-EGRTC

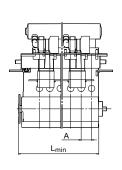
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	132.8+4.0/159.5	135.4+3.1/164.0	140.4+2.6/172.0		
Tier III mode	138.7+4.0/166.5	138.4+3.1/167.5	143.0+2.6/175.0		

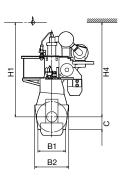
MAN B&W S80MF-C9 5-GI-HPSCR

MAR BUT COOME CO.C OF THE COTT				
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	132.8+4.0/159.5	135.4+3.1/164.0	140.9+2.5/172.5	
Tier III mode	134.1+4.0/161.0	136.3+3.1/165.0	141.3+2.5/173.0	

MAN B&W S80ME-C9.5-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	132.8+4.0/159.5	135.4+3.1/164.0	140.9+2.5/172.5	
Tier III mode	133.6+4.0/160.5	136.3+3.1/165.0	141.7+2.5/173.5	

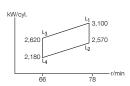

Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.



MAN B&W S80ME-C9.5

Specifications

Dimensi	ons:	Α	B ₁	B_2	С	H1	H4
mm		1,334	5,180	5,374	1,890	15,175	15,500
Cylinder	s:		6	7		8	9
L _{min}	mm	10,1	00	11,434	12,	12,768	
Dry mas	s						
Tier II	t	8	333	933	1,0	043	1,153
Tier III (a	dded)						
EcoEGR	t		11	12		13	
EGR	t		11	12		13	14
HPSCR	t		6	10	10		15
LPSCR	t		-			-	
Dual fue	l (added))					
GI	t		7	8		9	10



MAN B&W G70ME-C10.5

Cyl.	L ₁ kW
5	15,500
6	18 600

Stroke: 3,256 mm/L₁ MEP: 19.0 bar

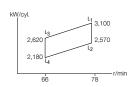
Fuel oil

MAN B&W G70ME-C10.5

L ₁ SFOC [g/kWh]					
Opt. load range	50%	75%	100%		
High-load	160.5	158.5	163.0		
Part-load EGB	158.5	157.0	165.5		
Low-load EGB	156.5	158.0	165.5		

GI (Methane)

MAN B&W G70ME-C10.5-GI


L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	130.4+3.9/160.5	129.8+2.9/161.0	136.3+2.4/168.0	

Note: Also available for GIE and LGIP, see page 12.

MAN B&W G70ME-C10.5

Cyl.	L ₁ kW
5	15,500
6	18,600

Stroke: 3,256 mm/L1 MEP: 19.0 bar

Fuel oil

MAN B&W G70ME-C10.5-EcoEGR

L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	153.5	153.5	161.0	
Tier III mode	162.5	160.5	165.0	

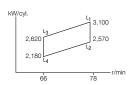
MAN B&W G70ME-C10.5-EGRBP

L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	156.5	158.0	166.0	
Tier III mode	163.5	162.5	168.0	

MAN B&W G70ME-C10.5-HPSCR

L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	156.5	158.0	165.5	
Tier III mode	158.0	159.0	166.0	

MAN B&W G70ME-C10.5-LPSCR


L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	156.5	158.0	165.5	
Tier III mode	157.5	159.0	166.5	

MAN B&W G70ME-C10.5

Cyl.	L ₁ kW	
5	15,500	
6	18 600	

Stroke: 3,256 mm/L1 MEP: 19.0 bar

GI (Methane)

MAN B&W G70ME-C10.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	127.7+3.9/153.5	128.6+3.0/156.0	135.4+2.5/166.0
Tier III mode	135.4+3.9/162.5	134.6+3.0/163.0	138.8+2.5/170.0

MAN B&W G70ME-C10.5-GI-EGRBP

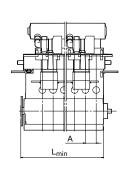
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	130.2+4.0/156.5	132.4+3.1/160.5	139.6+2.5/171.0
Tier III mode	136.1+4.0/163.5	136.3+3.1/165.0	141.3+2.5/173.0

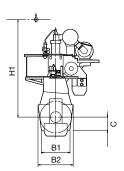
MAN B&W G70ME-C10.5-GI-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	130.2+4.0/156.5	132.4+3.0/160.5	139.2+2.5/170.5
Tier III mode	131.5+4.0/158.0	133.3+3.0/161.5	139.6+2.5/171.0

MAN B&W G70ME-C10.5-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	130.2+4.0/156.5	132.4+3.0/160.5	139.2+2.5/170.5
Tier III mode	131.1+4.0/157.5	133.3+3.0/161.5	140.0+2.5/171.5

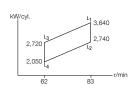

Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.



MAN B&W G70ME-C10.5

_			
Sn	eci	ticat	ions

Dimension	ns:	Α	B1	B2	С	H1
mm		1,044	4,470	4,628	1,750	14,000
Cylinders	:			5		
L _{min} 1	mm		7,4	52		8,49
Dry mass						
Tier II	t		5	21		586
Tier III (ad	ded)					
Tier III (ad EcoEGR	ded)			14		16
				14 15		
EcoEGR	t					16
EcoEGR EGR	t			15		16
EcoEGR EGR HPSCR	t t			15 4		16 16



MAN B&W G70ME-C9.5

Cyl.	L ₁ kW
5	18,200
6	21,840
7	25,480
8	29,120

Fuel oil

MAN B&W G70ME-C9.5

L₁ SFOC [g/kWh]			
Opt. load range	50%	75%	100%
High-load	165.5	163.0	167.0
Part-load EGB	162.5	161.5	168.5
Low-load EGB	160.5	162.5	168.5

GI (Methane)

MAN B&W G70ME-C9.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
Opt. load range	50%	75%	100%
High-load	134.5+4.0/165.5	133.3+3.0/165.5	139.6+2.5/172.0

Note: Also available for GIE and LGIP, see page 12.

MAN B&W G70ME-C9.5

Stroke: 3,256 mm/L1 MEP: 21.0 bar

-r/min

 Cyl.
 L₁ kW

 5
 18,200

 6
 21,840

 7
 25,480

 8
 29,120

83

MAN B&W G70ME-C9.5-EcoEGR

L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	158.5	158.0	165.0	
Tier III mode	167.5	165.0	169.0	

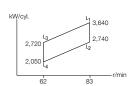
MAN B&W G70ME-C9.5-EGRBP

L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	160.5	162.5	169.0	
Tier III mode	168.5	167.0	172.0	

MAN B&W G70ME-C9.5-HPSCR

L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	160.5	162.5	168.5	
Tier III mode	162.0	163.5	169.0	

MAN B&W G70ME-C9.5-LPSCR


L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	160.5	162.5	168.5	
Tier III mode	161.5	163.5	169.5	

MAN B&W G70ME-C9.5

Cyl.	L ₁ kW
5	18,200
6	21,840
7	25,480
8	29,120

GI (Methane)

MAN B&W G70ME-C9.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	131.9+4.0/158.5	132.3+3.1/160.5	138.7+2.5/170.0	
Tier III mode	139.6+4.0/167.5	138.3+3.1/167.5	142.2+2.5/174.0	

MAN B&W G70ME-C9.5-GI-EGRBP

L₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	133.6+4.1/160.5	136.2+3.1/165.0	142.1+2.6/174.0
Tier III mode	140.4+4.1/168.5	140.1+3.1/169.5	144.7+2.6/177.0

MAN B&W G70ME-C9.5-GI-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	133.6+4.0/160.5	136.2+3.1/165.0	141.7+2.5/173.5	
Tier III mode	134.9+4.0/162.0	137.1+3.1/166.0	142.2+2.5/174.0	

MAN B&W G70ME-C9.5-GI-LPSCR

L ₁ dual fuel mode	L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%		
Tier II mode	133.6+4.0/160.5	136.2+3.1/165.0	141.7+2.5/173.5		
Tier III mode	134.5+4.0/161.5	137.1+3.1/166.0	142.6+2.5/174.5		

Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.

Tier II Tier III

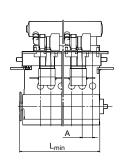
MAN B&W G70ME-C9.5

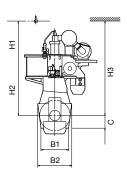
Specifications

Dimensi	ons:	Α	B1	B2	С	H1	H2	Н3
Fuel oil	mm	1,044	4,470	4,628	1,750	14,225	13,250	12,800
GI	mm	1,044	4,470	4,628	1,750	14,225	13,250	13,175

Cylinde	ers:	5	6	7	8
L _{min}	mm	7,452	8,496	10,856	12,116

Dry	mass
-----	------

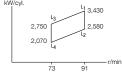

ilerii t 585 665 /50 855	Tier II	t		665	750	855
--------------------------	---------	---	--	-----	-----	-----


Tier III (added)

EcoEGR	t	15	16	17	18
EGR	t	14	16	17	18
HPSCR	t	4	5	6	7
LPSCR	t	-		-	

Dual fuel (added

Duai iu	er (added)				
GI	t	5	6	7	8



MAN B&W S70ME-C10.5

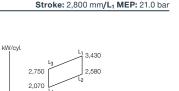
5 17,150 6 20,580	Stroke: 2,800 mm/L ₁ MEP: 21.0 bar	L ₁ kW	Cyl.
		17,150	5
		20,580	6
7 24,010 kW/cyl.	kW/cvl	24,010	7
8 27,440 L ₃ 3,430	L ₃ 3,430	27,440	8

Fuel oil

MAN B&W S70ME-C10.5

L ₁ SFOC [g/kWh]					
Opt. load range	50%	75%	100%		
High-load	164.5	162.0	166.0		
Part-load EGB	161.5	160.5	167.5		
Low-load EGB	159.5	161.5	167.5		

GI (Methane)


MAN B&W S70ME-C10.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
Opt. load range	50%	75%	100%		
High-load	133.7+3.9/164.5	132.5+3.0/164.5	138.8+2.5/171.0		

Note: Also available for GIE and LGIP, see page 12

MAN B&W S70ME-C10.5

L ₁ kW
17,150
20,580
24,010
27,440

91

73

- r/min

Fuel oil

MAN B&W S70ME-C10.5-EcoEGR

L ₁ SFOC [g/kWh]	'		
	50%	75%	100%
Tier II mode	157.5	157.0	164.0
Tier III mode	166.5	164.0	168.0

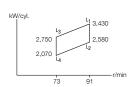
MAN B&W S70ME-C10.5-EGRBP

L₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	159.5	161.5	168.0
Tier III mode	167.5	166.0	171.0

MAN B&W S70ME-C10.5-HPSCR

L₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	159.5	161.5	167.5
Tier III mode	161.0	162.5	168.0

MAN B&W S70ME-C10.5-LPSCR


L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	159.5	161.5	167.5
Tier III mode	160.5	162.5	168.5

MAN B&W S70ME-C10.5

Cyl.	L ₁ kW	
5	17,150	
6	20,580	
7	24,010	
8	27,440	

GI (Methane)

MAN B&W S70ME-C10.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	131.1+4.0/157.5	131.5+3.1/159.5	137.9+2.5/169.0		
Tier III mode	138.8+4.0/166.5	137.4+3.1/166.5	141.3+2.5/173.0		

MAN B&W S70ME-C10.5-GI-EGRBP

L₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	132.7+4.1/159.5	135.4+3.1/164.0	141.3+2.6/173.0	
Tier III mode	139.6+4.1/167.5	139.2+3.1/168.5	143.8+2.6/176.0	

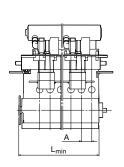
MAN B&W S70ME-C10.5-GI-HPSCR

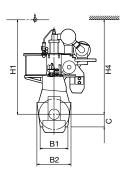
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	132.8+4.0/159.5	135.4+3.1/164.0	140.9+2.5/172.5		
Tier III mode	134.1+4.0/161.0	136.3+3.1/165.0	141.3+2.5/173.0		

MAN B&W S70ME-C10.5-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	132.8+4.0/159.5	135.4+3.1/164.0	140.9+2.5/172.5	
Tier III mode	133.6+4.0/160.5	136.3+3.1/165.0	141.7+2.5/173.5	

Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.

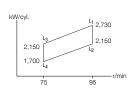




MAN B&W S70ME-C10.5

0-	24		
Sn	ecu	icati	ions

Dimensi	ons:	Α	B1	B2	С	H1	H4
mm		1,098	4,012	4,140	1,520	12,500	11,825
Cylinder	s:		5	6		7	8
L _{min}	mm	7,4	146	8,544	9,	642	10,740
Dry mas	s						
Tier II	t	4	124	502		563	634
Tier III (a	idded)						
EcoEGR	t		15	16		17	18
EGR	t		15	16		17	18
HPSCR	t		4	5		6	6
LPSCR	t		-	-		-	-
Dual fue	l (added)						
GI	t		5	6		7	7



MAN B&W S65ME-C8.6

Cyl.	L ₁ kW
5	13,650
6	16,380
7	19,110
8	21,840

Fuel oil

MAN B&W S65ME-C8.6

L ₁ SFOC [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	164.5	161.5	165.5	
Part-load EGB	161.5	160.0	167.0	
Low-load EGB	159.5	161.0	167.0	

GI (Methane)

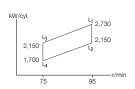
MAN B&W S65ME-C8.6-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	133.7+3.9/164.5	132.0+3.0/164.0	138.3+2.5/170.5	

Note: Also available for GIE and LGIP, see page 12

MAN B&W S65ME-C8.6

 Cyl.
 L₁ kW


 5
 13,650

 6
 16,380

 7
 19,110

 8
 21,840

Stroke: 2,730 mm/L1 MEP: 19.0 bar

Fuel oil

MAN B&W S65ME-C8.6-EcoEGR

L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	157.5	156.5	163.5	
Tier III mode	166.5	163.5	167.5	

MAN B&W S65ME-C8.6-EGRBP

L₁ SFOC [g/kWh]	

	50%	75%	100%
Tier II mode	159.5	161.0	167.5
Tier III mode	167.5	165.5	170.5

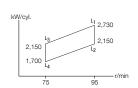
MAN B&W S65ME-C8.6-HPSCR

	[a/kWh]	

= o. oo [g/]				
	50%	75%	100%	
Tier II mode	159.5	161.0	167.0	
Tier III mode	161.0	162.0	167.5	

MAN B&W S65ME-C8.6-LPSCR

L₁ SFOC	


_, [3,]	50%	75%	100%
Tier II mode	159.5	161.0	167.0
Tier III mode	160.5	162.0	168.0

MAN B&W S65ME-C8.6

Cyl.	L ₁ kW	
5	13,650	
6	16,380	
7	19,110	
8	21,840	

GI (Methane)

MAN B&W S65ME-C8.6-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	131.0+4.0/157.5	131.1+3.0/159.0	137.4+2.5/168.5
Tier III mode	138.7+4.0/166.5	137.1+3.0/166.0	140.9+2.5/172.5

MAN B&W S65ME-C8.6-GI-EGRBP

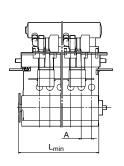
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	132.7+4.1/159.5	134.9+3.1/163.5	140.8+2.6/172.5
Tier III mode	139.5+4.1/167.5	138.8+3.1/168.0	143.4+2.6/175.5

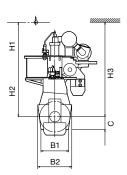
MAN B&W S65ME-C8.6-GI-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	132.7+4.0/159.5	135.0+3.1/163.5	140.4+2.5/172.0
Tier III mode	134.0+4.0/161.0	135.8+3.1/164.5	140.9+2.5/172.5

MAN B&W S65ME-C8.6-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	132.7+4.0/159.5	135.0+3.1/163.5	140.4+2.5/172.0
Tier III mode	133.6+4.0/160.5	135.8+3.1/164.5	141.3+2.5/173.0

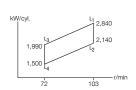

Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.



MAN B&W S65ME-C8.6

Specifications

Dimensi	ons:	Α	B1	B2	С	H1	H2	НЗ
mm		1,084	4,124	4,170	1,410	11,950	11,225	11,025
Cylinder	s:		5		6	7		8
L _{min}	mm		7,148	8,2	232	9,316		10,400
Dry mas	s							
Tier II	t		390	4	160	522		587
Tier III (a	dded)							
EcoEGR	t		14		15	16	i	17
EGR	t		14		15	16		17
HPSCR	t		4		5	6		6
LPSCR	t		-		-	-		-
Dual fue	l (addec	i)						
GI	t		5		5	6		7



MAN B&W G60ME-C10.5

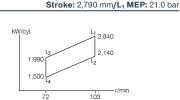
Cyl.	L ₁ kW
5	14,200
6	17,040
7	19,880
8	22,720

Fuel oil

MAN B&W G60ME-C10.5

L ₁ SFOC [g/kWh]			
Opt. load range	50%	75%	100%
High-load	161.5	160.5	165.0
Part-load EPT	159.5	159.0	167.5
Low-load EPT	157.5	160.0	167.5

GI (Methane)


MAN B&W G60ME-C10.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
Opt. load range	50%	75%	100%
High-load	131.2+3.9/161.5	131.2+3.0/163.0	138.0+2.5/170.0

Note: Also available for GIE and LGIP, see page 12

MAN B&W G60ME-C10.5

Cyl.	L ₁ kW
5	14,200
6	17,040
7	19,880
8	22,720

Fuel oil

MAN B&W	G60ME-C10	.5-EcoEGR
---------	-----------	-----------

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	154.5	155.5	163.0
Tier III mode	163.5	162.5	167.0

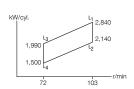
MAN B&W G60ME-C10.5-EGRBP

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	157.5	160.0	168.0
Tier III mode	164.5	164.5	170.0

MAN B&W G60ME-C10.5-HPSCR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	157.5	160.0	167.5
Tier III mode	159.0	161.0	168.0

MAN B&W G60ME-C10.5-LPSCR


L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	157.5	160.0	167.5	
Tier III mode	158.5	161.0	168.5	

MAN B&W G60ME-C10.5

Cyl.	L ₁ kW
5	14,200
6	17,040
7	19,880
8	22,720

GI (Methane)

MAN B&W G60ME-C10.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	128.5+4.0/154.5	130.3+3.0/158.0	137.1+2.5/168.0		
Tier III mode	136.2+4.0/163.5	136.3+3.0/165.0	140.5+2.5/172.0		

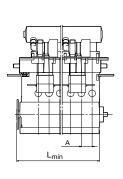
MAN B&W G60ME-C10.5-GI-EGRBP

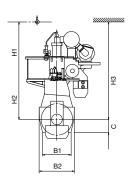
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	131.0+4.1/157.5	134.1+3.1/162.5	141.3+2.6/173.0		
Tier III mode	137.0+4.1/164.5	137.9+3.1/167.0	143.0+2.6/175.0		

MAN B&W G60ME-C10.5-GI-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	131.1+4.0/157.5	134.1+3.1/162.5	140.9+2.5/172.5		
Tier III mode	132.3+4.0/159.0	135.0+3.1/163.5	141.3+2.5/173.0		

MAN B&W G60ME-C10.5-GI-LPSCR

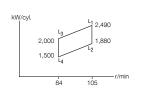

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
50% 75%					
Tier II mode	131.1+4.0/157.5	134.1+3.1/162.5	140.9+2.5/172.5		
Tier III mode	131.9+4.0/158.5	135.0+3.1/163.5	141.7+2.5/173.5		


Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.

MAN B&W G60ME-C10.5

Sn	ecifi	ICat	ıons

Dimensio	ns:	Α	B1	B2	С	H1	H2	H3
mm		1,080	4,090	4,220	1,500	12,175	11,400	11,075
Cylinders	s:		5		6	7	7	8
L _{min}	mm		7,390	8,4	170	9,550)	10,630
Dry mass	3							
Tier II	t		395	2	139	491	l	543
Tier III (ac	dded)							
EcoEGR	t		14		14	15	5	16
EGR	t		14		14	15	5	16
HPSCR	t		3		4	5	5	5
LPSCR	t		-		-			-
Dual fuel	(addec	d)						
GI	t		5		6	7	7	7



MAN B&W S60ME-C10.5

Tier II

Cyl.	L ₁ kW
5	12,450
6	14,940
7	17,430
8	19,920

Stroke:	2 400	mm/L	MED.	21 0	hai
Stroke:	2,400	111111/L1	IVIEP:	21.0	Dai

Fuel oil

MAN B&W S60ME-C10.5

L ₁ SFOC [g/kWh]					
Opt. load range	50%	75%	100%		
High-load	164.5	162.0	166.0		
Part-load EGB	161.5	160.5	167.5		
Low-load EGB	159.5	161.5	167.5		

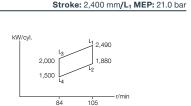
GI (Methane)

MAN B&W S60ME-C10.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
Opt. load range 50% 75%					
High-load	133.7+3.9/164.5	132.5+3.0/164.5	138.8+2.5/171.0		

Note: Also available for GIE and LGIP, see page 12

MAN B&W S60ME-C10.5


 Cyl.
 L₁ kW

 5
 12,450

 6
 14,940

 7
 17,430

 8
 19,920

Fuel oil

MAN B&W S60ME-C10.5-EcoEGR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	157.5	157.0	164.0
Tier III mode	166.5	164.0	168.0

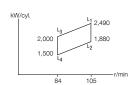
MAN B&W S60ME-C10.5-EGRBP

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	159.5	161.5	168.0
Tier III mode	167.5	166.0	171.0

MAN B&W S60ME-C10.5-HPSCR

L₁ SFOC [g/kWh]					
	50%	75%	100%		
Tier II mode	159.5	161.5	167.5		
Tier III mode	161.0	162.5	168.0		

MAN B&W S60ME-C10.5-LPSCR


L ₁ SFOC [g/kWh]						
	50%	75%	100%			
Tier II mode	159.5	161.5	167.5			
Tier III mode	160.5	162.5	168.5			

MAN B&W S60ME-C10.5

Cyl.	L ₁ kW
5	12,450
6	14,940
7	17,430
8	19 920

GI (Methane)

MAN B&W S60ME-C10.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	131.1+4.0/157.5	131.5+3.1/159.5	137.9+2.5/169.0		
Tier III mode	138.8+4.0/166.5	137.4+3.1/166.5	141.3+2.5/173.0		

MAN B&W S60ME-C10.5-GI-EGRBP

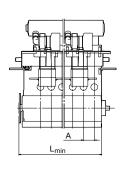
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	132.7+4.1/159.5	135.4+3.1/164.0	141.3+2.6/173.0	
Tier III mode	139.6+4.1/167.5	139.2+3.1/168.5	143.8+2.6/176.0	

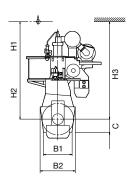
MAN B&W S60ME-C10.5-GI-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	132.8+4.0/159.5	135.4+3.1/164.0	140.9+2.5/172.5		
Tier III mode	134.1+4.0/161.0	136.3+3.1/165.0	141.3+2.5/173.0		

MAN B&W S60ME-C10.5-GI-LPSCR

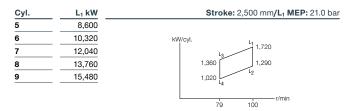
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	132.8+4.0/159.5	135.4+3.1/164.0	140.9+2.5/172.5	
Tier III mode	133.6+4.0/160.5	136.3+3.1/165.0	141.7+2.5/173.5	


Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.



MAN B&W S60ME-C10.5

O	24		
Sn	ecu	icati	ions


Dimension	ns:	Α	B1	B2	С	H1	H2	Н3
mm		940	3,420	3,550	1,300	10,500	9,725	10,125
Cylinders			5		6	7		8
L _{min}	mm		6,502	7,	142	8,382		9,322
Dry mass								
Tier II	t		293	;	332	369		425
Tier III (ad	ded)							
EcoEGR	t		14		14	15		16
EGR	t		14		14	15		16
HPSCR	t		3		4	5		5
LPSCR	t		-		-	-		-
Dual fuel ((added)							
			5		5	6		7

MAN B&W G50ME-C9.6

Fuel oil

MAN B&W G50ME-C9.6

L₁ SFOC [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	163.5	162.5	167.0	
Part-load EGB	161.5	161.0	169.5	
Low-load EGB	159.5	162.0	169.5	

GI (Methane)

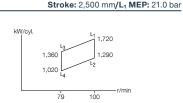
MAN B&W G50MF-C9.6-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
Opt. load range	50%	75%	100%		
High-load	132.8+4.0/163.5	132.9+3.0/165.0	139.6+2.5/172.0		

Note: Also available for GIE, LGIM and LGIP, see page 12

MAN B&W G50ME-C9.6

 Cyl.
 L₁ kW


 5
 8,600

 6
 10,320

 7
 12,040

 8
 13,760

 9
 15,480

Fuel oil

MAN B&W G50ME-C9.6-EcoEGR

L ₁ SFOC [g/kWh]					
	50%	75%	100%		
Tier II mode	156.5	157.5	165.0		
Tier III mode	165.5	164.5	169.0		

MAN B&W G50ME-C9.6-EGRBP

L₁ SFOC [a/kW	h1

	50%	75%	100%
Tier II mode	159.5	162.0	170.0
Tier III mode	166.5	166.5	172.0

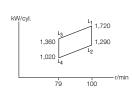
MAN B&W G50ME-C9.6-HPSCR

L₁ SFOC [g/kWh]

. 10/	50%	75%	100%
Tier II mode	159.5	162.0	169.5
Tier III mode	161.0	163.0	170.0

MAN B&W G50ME-C9.6-LPSCR

L SEOC Id/kW	/hī


	50%	75%	100%
Tier II mode	159.5	162.0	169.5
Tier III mode	160.5	163.0	170.5

MAN B&W G50ME-C9.6

GI (Methane)

MAN B&W G50ME-C9.6-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	130.2+4.0/156.5	131.9+3.1/160.0	138.7+2.5/170.0		
Tier III mode	137.9+4.0/165.5	137.9+3.1/167.0	142.2+2.5/174.0		

MAN B&W G50ME-C9.6-GI-EGRBP

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	132.7+4.1/159.5	135.8+3.1/164.5	143.0+2.6/175.0		
Tier III mode	138.7+4.1/166.5	139.6+3.1/169.0	144.7+2.6/177.0		

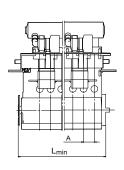
MAN B&W G50ME-C9.6-GI-HPSCR

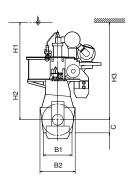
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	132.7+4.1/159.5	135.8+3.1/164.5	142.6+2.6/174.5		
Tier III mode	134.0+4.1/161.0	136.7+3.1/165.5	143.0+2.6/175.0		

MAN B&W G50ME-C9.6-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	132.7+4.1/159.5	135.8+3.1/164.5	142.6+2.6/174.5		
Tier III mode	133.6+4.1/160.5	136.7+3.1/165.5	143.4+2.6/175.5		

Note: Also available for GIE, LGIM and LGIP, except GIE and EGR, see pages 12-14.

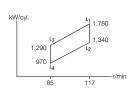




MAN B&W G50ME-C9.6

_				
Sn	ecr	ficat	ពេលវៅ	าร

Dimensio	ns:	Α	B1	B2	С	H1	H2	НЗ
mm		872	3,776	3,652	1,205	10,775	10,075	9,775
Cylinders	:	5		6	7		8	9
L _{min}	mm	6,260		7,132	8,004	8	,876	9,748
Dry mass								
Tier II	t	210		245	275		310	345
Tier III (ad	ded)							
EcoEGR	t	6		8	9		10	12
EGR	t	6		8	9		10	
EGR HPSCR	t _	6 4		8 	9		10 6	12
								12 6
HPSCR	t	4						12



MAN B&W S50ME-C9.7

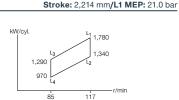
L ₁ kW
8,900
10,680
12,460
14,240
16,020

Fuel oil

MAN B&W S50ME-C9.7

L ₁ SFOC [g/kWh]			
Opt. load range	50%	75%	100%
High-load	161.5	160.5	165.0
Part-load EGB	159.5	159.0	167.5
Low-load EGB	157.5	160.0	167.5

GI (Methane)


MAN B&W S50ME-C9.7-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
Opt. load range	50%	75%	100%
High-load	131.2+3.9/161.5	131.2+3.0/163.0	138.0+2.5/170.0

Note: Also available for GIE, LGIM and LGIP, see page 12

MAN B&W S50ME-C9.7

Cyl.	L ₁ kW
5	8,900
6	10,680
7	12,460
8	14,240
9	16,020

Fuel oil

MAN B&W S50ME-C9.7-EcoEGR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	154.5	155.5	163.0
Tier III mode	163.5	162.5	167.0

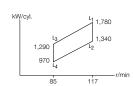
MAN B&W S50ME-C9.7-EGRBP

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	157.5	160.0	168.0
Tier III mode	164.5	164.5	170.0

MAN B&W S50ME-C9.7-HPSCR

L₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	157.5	160.0	167.5	
Tier III mode	159.0	161.0	168.0	

MAN B&W S50ME-C9.7-LPSCR


L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	157.5	160.0	167.5
Tier III mode	158.5	161.0	168.5

MAN B&W S50ME-C9.7

Cyl.	L ₁ kW
5	8,900
6	10,680
7	12,460
8	14,240
9	16,020

Stroke: 2,214 mm/L₁ MEP: 21.0 bar

GI (Methane)

MAN B&W S50ME-C9.7-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	128.5+4.0/154.5	130.2+3.0/158.0	137.1+2.5/168.0
Tier III mode	136.2+4.0/163.5	136.2+3.0/165.0	140.5+2.5/172.0

MAN B&W S50ME-C9.7-GI-EGRBP

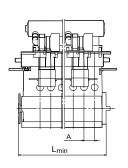
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	131.0+4.0/157.5	134.1+3.1/162.5	141.3+2.6/173.0
Tier III mode	137.0+4.0/164.5	137.9+3.1/167.0	143.0+2.6/175.0

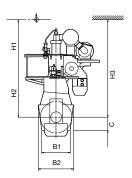
MAN B&W S50ME-C9.7-GI-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	131.1+4.0/157.5	134.1+3.1/162.5	140.9+2.5/172.5
Tier III mode	132.3+4.0/159.0	135.0+3.1/163.5	141.3+2.5/173.0

MAN B&W S50ME-C9.7-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	131.1+4.0/157.5	134.1+3.1/162.5	140.9+2.5/172.5
Tier III mode	131.9+4.0/158.5	135.0+3.1/163.5	141.7+2.5/173.5

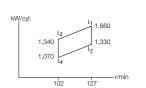

Note: Also available for GIE, LGIM and LGIP, except GIE and EGR, see pages 12-14.


Tier II Tier III

MAN B&W S50ME-C9.7

Specifications

Dimensions:		Α	B1	B2	С	H1	H2	Н3
mm		875	3,350	3,290	1,190	9,875	9,125	8,850
Cylinders:	:	5	i	6	7		8	g
L _{min} I	mm	6,073		6,948	7,823	8,	698	9,573
Dry mass								
Tier II	t	193		223	259	:	289	320
Tier III (ad	ded)							
EcoEGR	t	7		8	9		11	12
EGR	t	7		8	9		11	12
HPSCR	t	4		4	5		6	7
LPSCR	t	-		-	-		-	-
Dual fuel (added)							
GI	t	4		4	5		5	6



MAN B&W S50ME-C8.5

Cyl.	L ₁ kW
5	8,300
6	9,960
7	11,620
8	13,280
9	14,940

Fuel oil

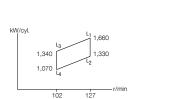
MAN B&W S50ME-C8.5

L₁ SFOC [g/kWh]					
Opt. load range	50%	75%	100%		
High-load	168.5	166.0	170.0		
Part-load EGB	165.5	164.5	171.5		
Low-load EGB	163.5	165.5	171.5		

GI (Methane)

MAN B&W S50ME-C8.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
Opt. load range	50%	75%	100%		
High-load	137.0+4.0/168.5	135.8+3.1/168.5	142.2+2.5/175.0		


Note: Also available for GIE and LGIP, see page 12.

Tier III

MAN B&W S50ME-C8.5

Stroke: 2,000 mm/L1 MEP: 20.0 bar

Cyl.	L ₁ kW
5	8,300
6	9,960
7	11,620
8	13,280
9	14,940

Fuel oil

MAN B&W S50ME-C8.5-EcoEGR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	161.5	161.0	168.0
Tier III mode	170.5	168.0	172.0

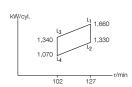
MAN B&W S50ME-C8.5-EGRBP

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	163.5	165.5	172.0
Tier III mode	171.5	170.0	175.0

MAN B&W S50ME-C8.5-HPSCR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	163.5	165.5	171.5
Tier III mode	165.0	166.5	172.0

MAN B&W S50ME-C8.5-LPSCR


L₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	163.5	165.5	171.5
Tier III mode	164.5	166.5	172.5

MAN B&W S50ME-C8.5

Cyl.	L ₁ kW			
5 8,300				
6	9,960			
7	11,620			
8	13,280			
9	14,940			

GI (Methane)

MAN B&W S50ME-C8.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	134.4+4.1/161.5	134.8+3.1/163.5	141.3+2.6/173.0		
Tier III mode	142.1+4.1/170.5	140.8+3.1/170.5	144.7+2.6/177.0		

MAN B&W S50ME-C8.5-GI-EGRBP

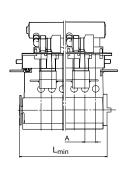
L₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	136.1+4.2/163.5	138.7+3.2/168.0	144.6+2.6/177.0		
Tier III mode	142.9+4.2/171.5	142.6+3.2/172.5	147.2+2.6/180.0		

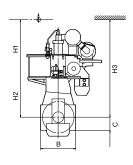
MAN B&W S50ME-C8.5-GI-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	136.1+4.1/163.5	138.8+3.1/168.0	144.3+2.6/176.5		
Tier III mode	137.4+4.1/165.0	139.6+3.1/169.0	144.7+2.6/177.0		

MAN B&W S50ME-C8.5-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	136.1+4.1/163.5	138.8+3.1/168.0	144.3+2.6/176.5	
Tier III mode	137.0+4.1/164.5	139.6+3.1/169.0	145.1+2.6/177.5	

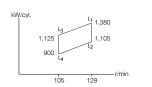

Note: Also available for GIE and LGIP, except GIE and EGR, see pages 12-14.



MAN B&W S50ME-C8.5

_				
Sn	ecu	ficat	าดเ	าร

Dimensi	ons:	Α	В	С	H1	H2	H3
mm		850	3,150	1,085	9,050	8,500	8,250
Cylinder	s:	5	6		7	8	9
L _{min}	mm	5,924	6,774		7,624	8,474	9,324
Dry mas	s						
Tier II	t	180	210		240	270	295
Tier III (a	dded)						
EcoEGR	t	6	7		9	10	11
EGR	t	6	7		9	10	11
HPSCR	t	3	4		5	5	6
LPSCR	t	-	-		-	-	-
Dual fue	l (added)						
GI	t	4	4		5	5	6



MAN B&W S46ME-B8.5

Tier II Tier III

Cyl.	L ₁ kW
5	6,900
6	8,280
7	9,660
8	11,040

Fuel oil

MAN B&W S46ME-B8.5

L ₁ SFOC [g/kWh]			
Opt. load range	50%	75%	100%
High-load	169.5	167.0	170.0
Part-load EGB	166.5	165.5	171.5
Low-load EGB	164.5	166.5	171.5

MAN B&W S46ME-B.5-HPSCR

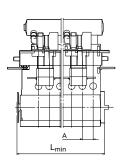
L SFOC [a/kWh]

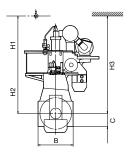
10,	50%	75%	100%
Tier II mode	164.5	166.5	171.5
Tier III mode	166.0	167.5	172.0

MAN B&W S46ME-B.5-LPSCR

L. SEOC [a/kWh]

L ₁ Or OO [g/ kWii]			
	50%	75%	100%
Tier II mode	164.5	166.5	171.5
Tier III mode	167.5	167.5	172.5

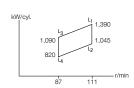

Note: If EGR is the preferred Tier III technology, MAN Energy Solutions must be contacted



MAN B&W S46ME-B8.5

Specifications

Dimensions:	Α	В	С	H1	H2	H3
mm	782	2,924	986	9,000	8,175	7,900
Cylinders:		5	6		7	8
L _{min} mm	5,5	28	6,310	7,0)92	7,874
Dry mass						
Tier II t	1	59	177	1	199	219
Tier III (added)						
HPSCR t		3	3		4	5
LPSCR t		_			_	-



MAN B&W G45ME-C9.5

Cyl.	L ₁ kW
5	6,950
6	8,340
7	9,730
8	11,120

Stroke:	2 250	mm/L	MFP:	21 0	har

Fuel oil

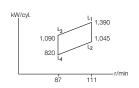
MAN B&W G45ME-C9.5

L ₁ SFOC [g/kWh]			
Opt. load range	50%	75%	100%
High-load	168.5	166.0	170.0
Part-load EGB	165.5	164.5	171.5
Low-load EGB	163.5	165.5	171.5

GI (Methane)

MAN B&W G45ME-C9.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	137.0+4.0/168.5	135.8+3.1/168.5	142.2+2.5/175.0	


Note: Also available for GIE.

Tier III

MAN B&W G45ME-C9.5

Cyl.	L ₁ kW
5	6,950
6	8,340
7	9,730
8	11,120

Fuel oil

MAN B&W G45ME-C9.5-EcoEGR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	161.5	161.0	168.0
Tier III mode	170.5	168.0	172.0

MAN B&W G45ME-C9.5-EGRBP

	50%	75%	100%
Tier II mode	163.5	165.5	172.0
Tier III mode	171.5	170.0	175.0

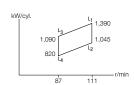
MAN B&W G45ME-C9.5-HPSCR

SF	റင	[a	/kW	/h1

	50%	75%	100%
Tier II mode	163.5	165.5	171.5
Tier III mode	165.0	166.5	172.0

MAN B&W G45ME-C9.5-LPSCR

L SEC	\sim	$\Gamma \sim I$	/I/\A	/h7


	50%	75%	100%
Tier II mode	163.5	165.5	171.5
Tier III mode	164.5	166.5	172.5

MAN B&W G45ME-C9.5

Cyl.	L ₁ kW
5	6,950
6	8,340
7	9,730
8	11,120

GI (Methane)

MAN B&W G45ME-C9.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]						
	50%	75%	100%			
Tier II mode	134.4+4.1/161.5	134.8+3.1/163.5	141.3+2.6/173.0			
Tier III mode	142.1+4.1/170.5	140.8+3.1/170.5	144.7+2.6/177.0			

MAN B&W G45ME-C9.5-GI-EGRBP

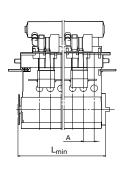
L₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]						
	50%	75%	100%			
Tier II mode	136.1+4.2/163.5	138.7+3.2/168.0	144.6+2.6/177.0			
Tier III mode	142.9+4.2/171.5	142.6+3.2/172.5	147.2+2.6/180.0			

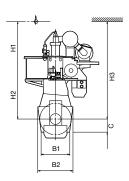
MAN B&W G45MF-C9 5-GI-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]						
	50%	75%	100%			
Tier II mode	136.1+4.1/163.5	138.8+3.1/168.0	144.3+2.6/176.5			
Tier III mode	137.4+4.1/165.0	139.6+3.1/169.0	144.7+2.6/177.0			

MAN B&W G45ME-C9.5-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]						
	50%	75%	100%			
Tier II mode	136.1+4.1/163.5	138.8+3.1/168.0	144.3+2.6/176.5			
Tier III mode	137.0+4.1/164.5	139.6+3.1/169.0	145.1+2.6/177.5			

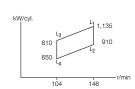

Note: Also available for GIE, except GIE and EGR, see pages 12-14.



MAN B&W G45ME-C9.5

Specificat	ions	

Dimensi	ons:	Α	B1	B2	С	H1	H2	H3
mm		784	3,350	3,260	1,169	9,725	9,525	9,250
Cylinder	s:		5		6	7	,	8
L _{min}	mm		5,638	6,	464	7,290)	8,116
Dry mas	s							
Tier II	t		163		183	206	3	234
Tier III (a	dded)							
EcoEGR	t		5		6	7	,	8
EGR	t		5		6	7	,	8
HPSCR	t		3		3	2	1	5
LPSCR	t		-		-		-	-
Dual fue	l (added)	ı						
GI	t		4		4	5	5	5



MAN B&W S40ME-C9.5

5,675
6,810
7,945
9,080
10,215

Fuel oil

MAN B&W S40ME-C9.5

L ₁ SFOC [g/kWh]			
Opt. load range	50%	75%	100%
High-load	170.5	168.0	172.0
Part-load EGB	167.5	166.5	173.5
Low-load EGB	165.5	167.5	173.5

GI (Methane)

MAN B&W S40ME-C9.5-GI

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
Opt. load range	50%	75%	100%
High-load	138.7+4.1/170.5	137.5+3.1/170.5	143.8+2.6/177.0

Note: Also available for GIE.

Tier III

MAN B&W S40ME-C9.5

Stroke: 1,770 mm/L1 MEP: 21.0 bar

Cyl.	L ₁ kW
5	5,675
6	6,810
7	7,945
8	9,080
9	10,215

Fuel oil

MAN B&W S40ME-C9.5-EcoEGR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	163.5	163.0	170.0
Tier III mode	172.5	170.0	174.0

MAN B&W S40ME-C9.5-EGRBP

L₁ SFOC [g/kWh]

	50%	75%	100%
Tier II mode	165.5	167.5	174.0
Tier III mode	173.5	172.0	177.0

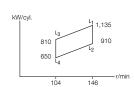
MAN B&W S40ME-C9.5-HPSCR

L₁ SFOC [g/kWh]

	50%	75%	100%
Tier II mode	165.5	167.5	173.5
Tier III mode	167.0	168.5	174.0

MAN B&W S40ME-C9.5-LPSCR

L₁ SFOC [a/kWh]


	50%	75%	100%
Tier II mode	165.5	167.5	173.5
Tier III mode	166.5	168.5	174.5

MAN B&W S40ME-C9.5

Cyl.	L ₁ kW
5	5,675
6	6,810
7	7,945
8	9,080
9	10,215

GI (Methane)

MAN B&W S40ME-C9.5-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	136.1+4.1/163.5	136.5+3.2/165.5	143.0+2.6/175.0
Tier III mode	143.8+4.1/172.5	142.5+3.2/172.5	146.4+2.6/179.0

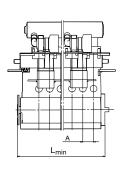
MAN B&W S40ME-C9.5-GI-EGRBP

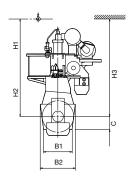
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	137.7+4.2/165.5	140.4+3.2/170.0	146.3+2.7/179.0
Tier III mode	144.6+4.2/173.5	144.2+3.2/174.5	148.9+2.7/182.0

MAN B&W S40MF-C9 5-GI-HPSCR

MAN BAN OTOME ODG ATTH OOT			
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	137.8+4.2/165.5	140.4+3.2/170.0	145.9+2.6/178.5
Tier III mode	139.1+4.2/167.0	141.3+3.2/171.0	146.4+2.6/179.0

MAN B&W S40ME-C9.5-GI-LPSCR

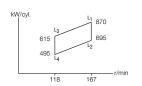

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	137.8+4.2/165.5	140.4+3.2/170.0	145.9+2.6/178.5	
Tier III mode	138.6+4.2/166.5	141.3+3.2/171.0	146.8+2.6/179.5	


Note: Also available for GIE, except GIE and EGR, see pages 12-14.

MAN B&W S40ME-C9.5

_				
Sn	ACI1	แดลเ	ion	s

Dimension	ons:	Α	B1	B2	С	H1	H2	НЗ
mm		700	2,650	2,610	950	7,800	7,475	7,200
Cylinder	s:	5	;	6	7		8	g
L _{min}	mm	5,000		5,700	6,400	7,	100	7,800
Dry mass	S							
Tier II	t	107	•	126	142		157	189
Tier III (a	dded)							
EcoEGR	t	4		5	6		7	7
EGR	t	4		5	6		7	7
HPSCR	t	2		3	3		4	4
LPSCR	t	-		-			-	-
Dual fuel	(added))						
GI	t	3		3	4		4	5



MAN B&W S35ME-B9.7

Tier II Tier III

Cyl.	L ₁ kW
5	4,350
6	5,220
7	6,090
8	6.960

Fuel oil

MAN B&W S35ME-B9.7

L ₁ SFOC [g/kWh]						
Opt. load range	50%	75%	100%			
High-load	169.5	167.0	170.0			

MAN B&W S35ME-B9.7-HPSCR

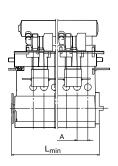
L₁ SFOC [q/kWh]

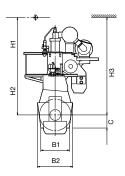
	50%	75%	100%
Tier II mode	170.5	168.0	171.0
Tier III mode	172.0	169.0	171.5

MAN B&W S35ME-B9.7-LPSCR

L₁ SFOC [a/kWh]

	50%	75%	100%
Tier II mode	170.5	168.0	171.0
Tier III mode	171.0	168.5	171.5

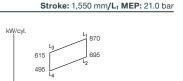

Note: If EGR is the preferred Tier III technology, MAN Energy Solutions must be contacted.



MAN B&W S35ME-B9.7

Specifications

Dimensions	s:	Α	B1	B2	С	H1	H2	H3
mm		612	2,300	2,288	830	6,925	6,625	6,275
Cylinders:			5		6	7		8
L _{min} m	ım		4,430	4,99	90	5,602		6,214
Dry mass Tier II	t		81	(90	99		111
Tier III (add	ed)							
HPSCR	t		2		2	3		3
LPSCR	t		-		-	-		_



MAN B&W S35ME-CR9.7

Cyl.	L ₁ kW
5	4,350
6	5,220
7	6,090
8	6 960

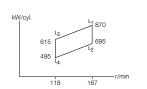
167

118

-r/min

GI (Methane)

MAN B&W S35ME-CR9.7-GI


L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	132.8+8.0/167.5	132.4+6.1/167.5	139.2+5.0/174.0		

Tier III

MAN B&W S35ME-CR9.7

L ₁ kW
4,350
5,220
6,090
6,960

Stroke: 1,550 mm/L₁ MEP: 21.0 bar

GI (Methane)

MAN B&W S35ME-CR9.7-GI-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]					
	50%	75%	100%		
Tier II mode	130.1+8.1/160.5	131.4+6.2/162.5	138.2+5.1/172.0		
Tier III mode	137.8+8.1/169.5	137.4+6.2/169.5	141.7+5.1/176.0		

MAN B&W S35ME-CR9.7-GI-EGRBP

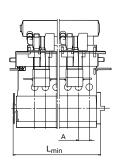
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]						
	50%	75%	100%			
Tier II mode	131.7+8.3/162.5	135.2+6.3/167.0	141.6+5.2/176.0			
Tier III mode	138.5+8.3/170.5	139.0+6.3/171.5	144.1+5.2/179.0			

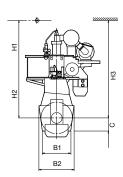
MAN B&W S35ME-CR9.7-GI-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]						
	50%	75%	100%			
Tier II mode	131.8+8.2/162.5	135.3+6.2/167.0	141.2+5.1/175.5			
Tier III mode	133.1+8.2/164.0	136.1+6.2/168.0	141.7+5.1/176.0			

MAN B&W S35ME-CR9.7-GI-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]						
	50%	75%	100%			
Tier II mode	131.8+8.2/162.5	135.3+6.2/167.0	141.2+5.2/175.5			
Tier III mode	132.7+8.2/163.5	136.1+6.2/168.0	142.1+5.2/176.5			


Note: Also available for GIE, except GIE and EGR, see pages 12-14.


MAN B&W S35ME-CR9.7

Tier II	Tier III

_				
Sp	ecii	icat	ıor	าร

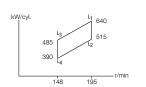
Dimension	ıs:	Α	B1	B2	С	H1	H2	H3
mm		612	2,300	2,288	830	6,925	6,625	6,275
Cylinders:			5		6	7		8
L _{min} r	nm		4,430	4,99	0	5,602		6,214
Dry mass Tier II	t		81	Ç	10	99		111
Tier III (add								
HPSCR	t		2		2	3		3
LPSCR	t		-		-	-		-

MAN PrimeServ

Service with passion

We at MAN PrimeServ understand that performance and reliability are paramount to your business. You need technical competence that drives your success. MAN PrimeServ's many decades of hands-on experience and its diverse portfolio provide this. With MAN PrimeServ as your partner you benefit from state-of-the-art technical and digital solutions that fit your individual situation. What's more, these benefits are brought directly to your business through a global network of local experts. Whatever the time and wherever you are in the world, you can count on MAN PrimeServ as a strong service solution provider for your needs.

To find out more about our technical competence, please visit:



MAN B&W S30ME-B9.5

Tier II Tier III

Cyl.	L ₁ kW
5	3,200
6	3,840
7	4,480
8	5.120

Tier II Fuel oil

MAN B&W S30ME-B9.5

L ₁ SFOC [g/kWh]			
Opt. load range	50%	75%	100%
High-load	175.5	173.0	176.0

Tier III fuel oil

MAN B&W S30ME-B9.5-HPSCR

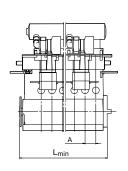
L ₁ SFOC	[a/kWh]	

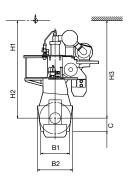
	50%	75%	100%
Tier II mode	175.5	173.0	176.0
Tier III mode	177.0	174.0	176.5

MAN B&W S30ME-B9.5-LPSCR

L SFOC [a/kWh]

L ₁ O. OO [g/.ttm]			
	50%	75%	100%
Tier II mode	175.5	173.0	176.0
Tier III mode	176.0	173.5	176.5


Note: If EGR is the preferred Tier III technology, MAN Energy Solutions must be contacted.

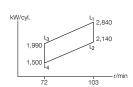


MAN B&W S30ME-B9.5

Specifications

Dimensions:	Α	B1	B2	С	H1	H2	H3
mm	538	1,980	2,020	712	6,025	5,950	5,625
Cylinders:		5		6	7	•	8
L _{min} mm		4,087	4,62	25	5,163		5,701
Dry mass Tier II t		61	6		77	,	86
Tier III (added)							
HPSCR t		1 _		2	2		2
LPSCR t				_	_		

MAN B&W two-stroke propulsion engines



Alternative fuels
Tier II and Tier III

Cyl.	L ₁ kW
5	14,200
6	17,040
7	19,880
8	22.720

GIE (Ethane)

MAN B&W G60ME-C10.5-GIE

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
Opt. load range	50%	75%	100%
High-load	144.2+4.1/161.5	146.1+3.1/163.0	150.5+2.6/170.0

LGIP (LPG)

MAN B&W G60ME-C10.5-LGIP

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
Opt. load range	50%	75%	100%
High-load	142.6+7.9/161.5	143.5+6.0/160.5	148.6+5.0/165.0
Part-load EPT	140.6+8.0/159.5	142.1+6.1/159.0	150.8+5.0/167.5
Low-load EPT	138.8+8.0/157.5	143.0+6.1/160.0	150.8+5.0/167.5

Stroke: 2,790 mm/L1 MEP: 21.0 bar

Cyl.	L ₁ kW
5	14,200
6	17,040
7	19,880
8	22,720

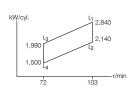
kW/cyl.			L ₁ 2,840		
	L ₃	/	2,140		
	990	/	-L ₂		

103

GIE (Ethane)

MAN B&W G60ME-C10.5-GIE-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	140.6+4.1/157.5	145.6+3.2/162.5	152.7+2.6/172.5
Tier III mode	141.9+4.1/159.0	146.5+3.2/163.5	153.2+2.6/173.0


MAN B&W G60ME-C10.5-GIE-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	140.6+4.1/157.5	145.6+3.2/162.5	152.7+2.6/172.5
Tier III mode	141.5+4.1/158.5	146.5+3.2/163.5	153.6+2.6/173.5

Cyl.	L ₁ kW
5	14,200
6	17,040
7	19,880
8	22,720

LGIP (LPG)

MAN B&W G60ME-C10.5-LGIP-EcoEGR

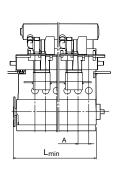
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	136.0+8.0/154.5	138.8+6.1/155.5	146.7+5.0/163.0
Tier III mode	144.4+8.0/163.5	145.3+6.1/162.5	150.4+5.0/167.0

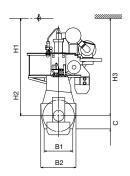
MAN B&W G60ME-C10.5-LGIP-EGRBP

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	138.7+8.1/157.5	142.9+6.2/160.0	151.2+5.1/168.0	
Tier III mode	145.2+8.1/164.5	147.1+6.2/164.5	153.1+5.1/170.0	

MAN B&W G60ME-C10.5-LGIP-HPSCR

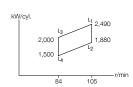
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	138.7+8.1/157.5	143.0+6.1/160.0	150.8+5.0/167.5
Tier III mode	140.1+8.1/159.0	143.9+6.1/161.0	151.3+5.0/168.0


MAN B&W G60ME-C10.5-LGIP-LPSCR


L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	138.7+8.0/157.5	143.0+6.1/160.0	150.8+5.1/167.5
Tier III mode	139.7+8.0/158.5	143.9+6.1/161.0	151.7+5.1/168.5

O	24		
Sn	ecu	icati	ions

Dimensi	ons:	Α	B1	B2	С	H1	H2	НЗ
mm		1,080	4,090	4,220	1,500	12,175	11,400	11,075
Cylinder	s:		5		6		7	8
L _{min}	mm		7,390	8,4	170	9,55	0	10,630
Dry mass	s							
Tier II	t		395	4	139	49	1	543
Tier III (a	dded)							
EcoEGR	t		14		14	1	5	16
EGR	t		14		14	1	5	16
HPSCR	t		3		4		5	5
LPSCR	t		-		-		-	-
Dual fuel	l (addec	I)						
GIE	t		5		6		7	7
LGIP			 5				 7	7



Cyl.	L ₁ kW	
5	12,450	
6	14,940	
7	17,430	
8	19.920	

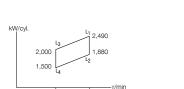
GIE (Ethane)

MAN B&W S60ME-C10.5-GIE

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
Opt. load range	50%	75%	100%
High-load	146.9+4.1/167.5	147.4+3.1/169.5	151.4+2.6/176.0

LGIP (LPG)

MAN B&W S60ME-C10.5-LGIP


L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
Opt. load range	50%	75%	100%
High-load	145.4+7.9/164.5	144.9+6.0/162.0	149.5+5.0/166.0
Part-load EGB	142.5+8.0/161.5	143.4+6.1/160.5	150.8+5.0/167.5
Low-load EGB	140.7+8.0/159.5	144.4+6.1/161.5	150.8+5.0/167.5

Tier III

MAN B&W S60ME-C10.5

Stroke: 2,400 mm/L1 MEP: 21.0 bar

Cyl.	L ₁ kW
5	12,450
6	14,940
7	17,430
8	19,920

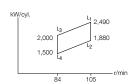
105

84

GIE (Ethane)

MAN B&W S60ME-C10.5-GIE-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	142.4+4.1/162.5	147.0+3.2/169.0	152.7+2.6/177.5
Tier III mode	143.7+4.1/164.0	147.8+3.2/170.0	153.2+2.6/178.0


MAN B&W S60ME-C10.5-GIE-LPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]			
	50%	75%	100%
Tier II mode	142.4+4.1/162.5	147.0+3.2/169.0	152.7+2.6/177.5
Tier III mode	143.3+4.1/163.5	147.8+3.2/170.0	153.6+2.6/178.5

Cyl.	L ₁ kW
5	12,450
6	14,940
7	17,430
8	19.920

Stroke: 2,400 mm/L1 MEP: 21.0 bar

LGIP (LPG)

MAN B&W S60ME-C10.5-LGIP-EcoEGR

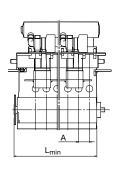
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	138.8+8.0/157.5	140.1+6.1/157.0	147.6+5.0/164.0	
Tier III mode	147.1+8.0/166.5	146.6+6.1/164.0	151.3+5.0/168.0	

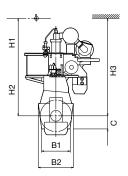
MAN B&W S60ME-C10.5-LGIP-EGRBP

L₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	140.5+8.1/159.5	144.3+6.2 /161.5	151.2+5.1/168.0	
Tier III mode	147.9+8.1/167.5	148.4 (6.2) /166.0	154.0+5.1/171.0	

MAN B&W S60ME-C10.5-LGIP-HPSCR

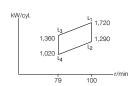
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	140.6+8.0/159.5	144.3+6.1/161.5	150.8+5.0/167.5	
Tier III mode	142.0+8.0/161.0	145.3+6.1/162.5	151.3+5.0/168.0	


MAN B&W S60ME-C9.10-LGIP-LPSCR


L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	140.6+8.0/159.5	144.3+6.1/161.5	150.8+5.1/167.5	
Tier III mode	141.5+8.0/160.5	145.3+6.1/162.5	151.7+5.1/168.5	

_				
Sn	eci	tica	tic	าทร

Dimension	ns:	Α	B1	B2	С	H1	H2	H3
mm		940	3,440	3,520	1,300	10,500	9,725	10,125
Cylinders	<u> </u>		5		6	7		8
L _{min}	mm		6,440	7,3	880	8,320		9,260
Dry mass								
Tier II	t		293	3	32	369		425
Tier III (ad	ded)							
EcoEGR	t		14		14	15		16
EGR	t		14		14	15		16
HPSCR	t		3		4	5		5
LPSCR	t		-		-	-		-
Dual fuel ((added)							
GIE	t		5		5	6		7
LGIP			 5		 5	6		7



MAN B&W G50ME-C9.6

Cyl.	L ₁ kW
5	8,600
6	10,320
7	12,040
8	13,760
9	15,480

Stroke: 2,500 mm/L1 MEP: 21.0 bar

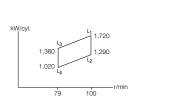
GIE (Ethane)

MAN B&W G50ME-C9.6-GIE

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	146.0+4.1/166.5	147.9+3.1/170.0	152.3+2.6/177.0	

LGIM (Methanol)

MAN B&W G50ME-C9.6-LGIM


L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
Opt. load range	50%	75%	100%	
High-load	322.4+13.3/163.5	327.2+10.1/162.5	340.4+8.4/167.0	
Part-load EGB	317.7+13.5/161.5	323.7+10.3/161.0	345.5+8.5/169.5	
Low-load EGB	313.4+13.5/159.5	325.8+10.3/162.0	345.5+8.5/169.5	

Tier III

MAN B&W G50ME-C9.6

Stroke: 2,500 mm/L1 MEP: 21.0 bar

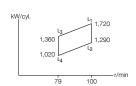
Cyl.	L ₁ kW
5	8,600
6	10,320
7	12,040
8	13,760
9	15,480

GIE (Ethane)

MAN B&W G50ME-C9.6-GIE-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	142.3+4.2/162.5	147.4+3.2/169.5	154.5+2.6/179.5	
Tier III mode	143.7+4.2/164.0	148.3+3.2/170.5	155.0+2.6/180.0	

MAN B&W G50ME-C9.6-GIE-LPSCR


L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	142.3+4.2/162.5	147.4+3.2/169.5	154.5+2.6/179.5	
Tier III mode	143.2+4.2/163.5	148.3+3.2/170.5	155.4+2.6/180.5	

MAN B&W G50ME-C9.6

Cyl.	L ₁ kW
5	8,600
6	10,320
7	12,040
8	13,760
9	15,480

Stroke: 2,500 mm/L1 MEP: 21.0 bar

LGIM (Methanol)

MAN B&W G50ME-C9.6-LGIM-EcoEGR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	307.0+13.4/156.5	316.0+10.2/157.5	335.9+8.5/165.0	
Tier III mode	326.3+13.4/165.5	331.0+10.2/164.5	344.5+8.5/169.0	

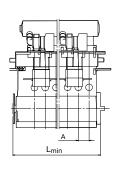
MAN B&W G50ME-C9.6-LGIM-EGRBP

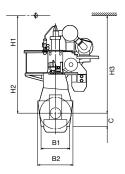
L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]				
	50%	75%	100%	
Tier II mode	312.9+13.7/159.5	325.5+10.4/162.0	346.3+8.6/170.0	
Tier III mode	328.0+13.7/166.5	335.2+10.4/166.5	350.6+8.6/172.0	

MAN B&W G50ME-C9.6-LGIM-HPSCR

L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]							
	50%	75%	100%				
Tier II mode	313.1+13.6/159.5	325.7+10.3/162.0	345.5+8.5/169.5				
Tier III mode	316.3+13.6/161.0	327.8+10.3/163.0	346.5+8.5/170.0				

MAN B&W G50ME-C9.6-LGIM-LPSCR


L ₁ dual fuel mode (SGC+SPOC)/fuel oil mode (SFOC) [g/kWh]						
	50%	75%	100%			
Tier II mode	313.2+13.5/159.5	325.7+10.3/162.0	345.4+8.5/169.5			
Tier III mode	315.3+13.5/160.5	327.8+10.3/163.0	347.6+8.5/170.5			


Tier II Tier III

MAN B&W G50ME-C9.6

Specifications

Dimensio	ns:	Α	B1	B2	С	H1	H2	H3
mm		872	3,776	3,652	1,205	10,775	10,075	9,775
Cylinders	:	5	i	6	7		8	9
L _{min}	mm	6,260		7,132	8,004	8	,876	9,748
Dry mass								
Tier II	t	210		245	275		310	345
Tier III (ad	ded)							
EcoEGR	t	6	i	8	9		10	12
EGR	t	6		8	9		10	12
HPSCR	t	4		4	5		6	6
LPSCR	t	-		-	-		-	-
Dual fuel	(added)						
GIE	t	5		5	6		6	7
LGIM		7			8		9	10

MAN Alpha

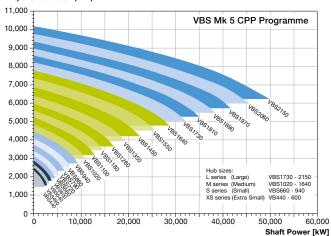
Propeller Programme - FPP and CPP

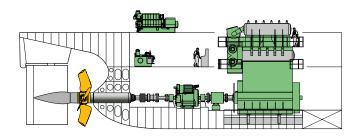
The MAN Alpha FPP portfolio covers:

- power range of 4-40 MW per shaft
- blade configurations for 3, 4, 5 and 6-bladed propellers
- propellers with integrated shaft line and stern tube solutions
- wide range of stern tube lube and sealing systems
 - oil, water, biodegradable oils.

6.9-metre MAN Alpha Kappel propeller for a 105,000 dwt crude oil carrier ►

The MAN Alpha FPPs are characterised by the following benefits:

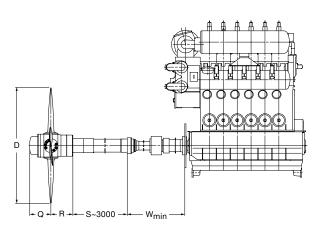

- High-efficient, hydrodynamically optimised blade profiles
 - Kappel designs available
- High reliability: robust approach with ample mechanical design margins
- High-efficient aft-ship integration with rudder, rudder bulb, ducts, etc.
- Layouts for complete two-stroke propulsion systems, e.g. with PTO solutions
- Plant calculations with upfront consideration to torsional vibration calculation (TVC), alignment and control systems.


MAN Alpha controllable pitch propeller

- Standard Mk 5 versions are 4-bladed 3 and 5-bladed propellers are available upon request
- The figures stated after the VBS indicate the propeller hub diameter
- Standard blade/hub materials are Ni-Al-bronze; stainless steel is optional
- Propellers are available up to the highest ice classes; however the standard programme is based on 'no ice'.

Standard programme

Propeller diameter (mm)



Two-stroke propulsion system installation – complete powertrain with propeller and aft ship equipment

		Prop. speed	D 1)	Hub VBS	Q	R	Wmin	Prop. mass
Cyl.	kW	r/min	mm	mm	mm	mm	mm	t ²⁾
G70M	E-C9.5/-GI							
5	18,200	83	8,100	1,890	1,436	1,496	3,700	90.0
6	21,840	83	8,450	2,060	1,565	1,593	3,700	93.5
7	25,480	83	8,750	2,150	1,634	1,645	3,700	102.0
8	29,120	83						3)
S65M	E-C8.5/-GI							
5	14,350	95	7,150	1,730	1,315	1,339	3,400	66.1
6	17,220	95	7,450	1,810	1,375	1,385	3,400	73.0
7	20,090	95	7,700	1,890	1,436	1,466	3,400	81.2
8	22.960	95	7.900	1.970	1.497	1.512	3.400	89.3

For optimal Kappel blades, the propeller diameter is reduced by an average of 3-10% compared to the listed standard diameters

³⁾ Available on request

²⁾ The masses are stated for 4,000 mm stern tube and 8,000 mm propeller shaft

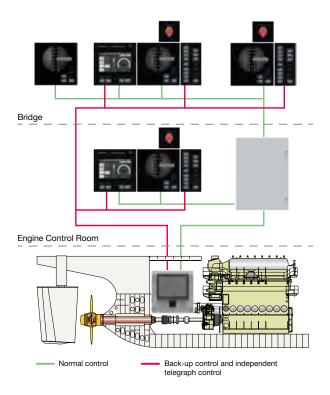
Cyl.	kW	Prop. speed r/min	D ¹⁾ mm	Hub VBS mm	Q mm	R mm	Wmin mm	Prop. mass t ²⁾
G60M	E-C9.5/-GI							
5	13,400	97	6,950	1,640	1,246	1,287	3,300	60.0
6	16,080	97	7,250	1,730	1,315	1,339	3,300	64.2
7	18,760	97	7,450	1,810	1,375	1,420	3,300	70.3
8	21,440	97	7,700	1,890	1,436	1,496	3,100	74.6
G50M	E-C9.6/-GI							
5	8,600	100	6,150	1,450	1,102	1,174	3,100	42.7
6	10,320	100	6,450	1,550	1,178	1,231	3,100	45.1
7	12,040	100	6,650	1,550	1,178	1,231	3,100	48.1
8	13,760	100	6,850	1,640	1,246	1,287	2,900	50.9
9	15,480	100	7,050	1,730	1,315	1,339	3,100	58.1
S50MI	E-C9.7/-GI							
5	8,900	117	5,650	1,350	1,037	1,096		
6	10,680	117	5,850	1,450	1,114	1,148		
7	12,460	117	6,050	1,450	1,114	1,148		
8	14,240	117	6,200	1,550	1,175	1,256		
9	16,020	117	6,350	1,640	1,260	1,288		
S50MI	E-C8.5/-GI	3)						
5	8,300	127	5,400	1,350	1,030	1,082	2,690	31.7
6	9,960	127	5,600	1,350	1,100	1,145	2,690	35.4
7	11,620	127	5,800	1,450	1,175	1,233	2,690	39.9
8	13,280	127	5,950	1,450	1,175	1,248	2,690	42.0

¹⁾ For optimal Kappel blades, the propeller diameter is reduced by an average of 3-10% compared to the listed standard diameters

²⁾ The masses are stated for 4,000 mm stern tube and 8,000 mm propeller shaft

³⁾ Data for 9 cylinder is available on request

Cyl.	kW	Prop. speed r/min	D 1) mm	Hub VBS mm	Q mm	R mm	Wmin mm	Prop. mass
	E-B8.5/-GI							
5	6,900	129	5,200	1,260	975	1,035	2,650	27.4
6	8,280	129	5,400	1,350	1,030	1,082	2,650	29.9
7	9,660	129	5,550	1,350	1,100	1,145	2,650	34.0
8	11,040	129	5,700	1,450	1,175	1,233	2,650	38.9
G45M	E-C9.5/-GI							
5	6,950	111	5,650	1,350	1,026	1,109	2,700	28.8
6	8,340	111	5,900	1,350	1,026	1,109	2,700	30.6
7	9,730	111	6,100	1,450	1,102	1,197	2,700	35.1
8	11,120	111	6,250	1,550	1,178	1,236	2,700	37.6
	E-C9.5/-GI							
5	5,500	125	5,000	1,180	897	1,054	2,520	24.1
6	6,600	125	5,250	1,260	975	1,070	2,600	28.0
7	7,700	125	5,400	1,260	975	1,170	2,520	29.7
8	8,800	125	5,550	1,350	1,026	1,138	2,520	32.9
S40MI	E-C9.5/-GI							
5	5,675	146	4,650	1,100	885	972	2,500	22.1
6	6,810	146	4,800	1,180	957	1,025	2,500	24.6
7	7,945	146	4,950	1,180	957	1,025	2,500	26.0
8	9,080	146	5,050	1,260	975	1,081	2,500	29.8
9	10,215	146	5,550	1,350	1,026	1,140	2,700	34.4
\$35MI	E-B9.7/-GI							
5	4,350	167	4,050	940	821	920	2,500	16.3
6	5,220	167	4,200	1,020	821	920	2,500	16.9
7	6,090	167	4,350	1,100	885	946	2,500	19.4
8	6,960	167	4,450	1,100	885	946	2,500	20.4


Cyl. S30M	<u>kW</u> E-B9.5/-GI	Prop. speed r/min	D 1) mm	Hub VBS mm	Q mm	R mm	Wmin mm	Prop. mass t ²⁾
5	3,200	195	3,500	860	653	750	2,350	10.5
6	3,840	195	3,600	860	653	750	2,350	11.0
7	4,480	195	3,700	940	714	886	2,350	12.3
8	5,120	195	3,800	940	714	886	2,350	13.0

¹⁾ For optimal Kappel blades, the propeller diameter is reduced by an average of 3-10% compared to the listed standard diameters

²⁾ The masses are stated for 3,000 mm stern tube and 8,000 mm propeller shaft

Alphatronic 3000 Propulsion control system

A high number of various FPP and CPP propulsion package applications are controlled by the Alphatronic 3000 system - customised for combinations of MAN low and medium speed engines in a wide range of diesel-mechanical, hybrid or diesel-electric propulsion setups.

Simple system architecture for a straightforward two-stroke CPP propulsion plant

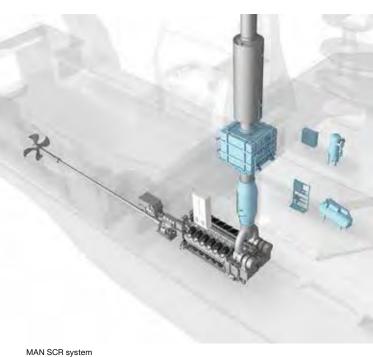
MAN four-stroke propulsion engines

MAN four-stroke propulsion engines - all emission requirements

Besides focus on power density and fuel economy, MAN Energy Solutions is committed to a steady reduction of the environmental impact of our engines.

IMO Tier II

Applying well-proven methods to achieve a cleaner and more efficient combustion process, MAN Energy Solutions has significantly decreased NO_x emissions. Our four-stroke propulsion engines are IMO Tier II compliant with internal engine measures alone.


IMO Tier III

For operation in emission control areas (ECA), MAN Energy Solutions has developed a comprehensive range of selective catalytic reduction (SCR) systems that tremendously reduce NO_x levels surpassing IMO Tier III requirements.

MAN Energy Solutions is the first manufacturer to successfully produce and offer IMO Tier III compliant four-stroke marine engines based on a fully modular SCR kit covering our entire four-stroke engine portfolio. In 2014 MAN Energy Solutions was awarded the first IMO Tier III EIAPP certificate together with the classification society DNV-GL.

MAN Energy Solutions' standard SCR system is available in fourteen different sizes covering our entire portfolio of four-stroke engines. Customised SCR systems are offered on demand.

MAN has developed a complete range of SCR systems that work perfectly with our engines for maximum system efficiency. The intelligent exhaust gas temperature control allows significant savings in fuel consumptions as compared to third-party supplier systems. MAN SCR systems work with MGO. MDO and HFO with up to 3.5% sulphur.

Our modular system comes in 14 different sizes to match all power demands. Some notable benefits of standardisation are significant cost reduction and simplification of installation.

The modular SCR component kit

Urea consumption

The urea consumption depends on engine type, selected performance characteristics (engine map), in case of an engine with ECOMAP capability, operating profile, fuel type, ambient conditions, type of reduction agent, etc.

For more detailed information on the expected level of urea consumption, please contact MAN Energy Solutions with your project specific request.

Conventional injection engines

Our well-established engine types are used in a vast array of applications all over the world. Based on long-term experience of historical proportions. our engines are in continuous development to increase power, reduce emissions, increase reliability, reduce fuel oil consumption, and increase longevity. Our engines are the prime movers of choice in the maritime sector.

Common rail (CR) engines

The flexibility of our CR technology enables a substantial improvement of the combustion process that improves the fuel economy and reduces emission levels. It is particularly advantageous in the low-load and mid-load ranges where our unique ECOMAP system (optional) applies different engine maps to reduce fuel consumption while observing IMO emission limits. Another feature is our patented Boost Injection. Our engine control system senses a load increase at a very early stage and tremendously improves the load response with the activation of boost injection by the common rail control. In addition, exhaust gas opacity is markedly reduced, far below the visibility limit. Our CR engines run efficiently on liquid fuels complying with ISO 8217-2017 DMA, DMZ, and DMB, and on residual fuels (HFO) up to 700 cSt (in compliance with ISO-F-RMK 700).

Diesel oil (D) engines

The V28/33D STC features very favourable ratios of power-to-weight and power-to-installation space. The combination of low fuel consumption, low emissions and reduced life cycle costs makes this engine the ideal solution for propulsion in high speed ferries, naval and offshore patrol vessels. The V28/33D STC engine operates on distillates according to ISO 8217 DMA or equivalent fuel types.

Sequential turbocharging (STC)

The MAN Energy Solutions sequential turbocharging system operates with two high-efficiency turbochargers. Depending on the amount of charge air required, the second turbocharger is switched on or off. In this way, the engine is operated at its optimum operating point over the whole applicable load range.

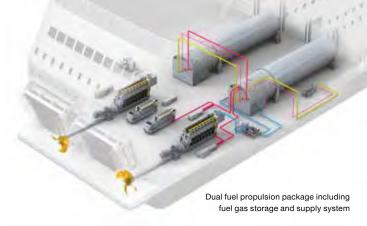
The result is an extended operating envelope at low engine speeds, which gives a power reserve for ship acceleration, ship turning, sprints or towing. Furthermore, the STC system is characterised by a low thermal signature, decreased smoke emission, low vibrations and continuous low-load operation with reduced fuel consumption, which makes it the ideal solution for propulsion in naval applications and offshore patrol vessels.

Dual fuel (DF) engines

Dual fuel engines from MAN Energy Solutions run efficiently on liquid fuels or natural gas with very low emissions that are compliant with IMO limits. On gaseous fuel, the engines comply with IMO Tier III without the need for additional exhaust gas aftertreatment, and on liquid fuel they either fulfill IMO Tier II, or IMO Tier III together with an SCR system. The possibility to switch over seamlessly from gas to HFO or diesel operation and vice versa provides full flexibility in multiple applications.

All dual fuel engines can run on natural gas with a methane number higher than 80 without adjustments. For lower methane numbers, MAN Energy Solutions can deliver well-adapted solutions. The optimised combustion chamber ensures very low fuel consumption in both operational modes.

MAN Cryo fuel gas supply systems


MAN Cryo fuel gas systems are the world's leading solution for safely storing energy on board gas fuelled ships and reliably providing it to the engines.

After pioneering in the market for LNG-fuelled ships in 1999, MAN Cryo fuel gas systems have since then been installed on a major part of today's gas fuelled ship fleet, either standardised or tailor-made. The references range from passenger ferries to offshore platform supply vessels, tug boats, bunker barges and even ice breakers.

MAN Energy Solutions provides one-stop solutions with complete packages consisting of main engines, auxiliary gensets, propulsion train, LNG fuel tank, coldbox, control system and bunkering station.

Vacuum-insulated type-C LNG tank including cold box

In order to deliver cost-optimised systems with shortest delivery times, MAN Energy Solutions offers a broad range of standard cryo packages in all required sizes. Beyond this standard scope and for larger tank sizes, customised solutions are engineered in the most efficient way in order to meet all our customers' demands.

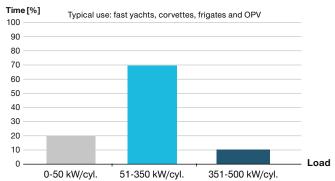
MAN Cryo LNG standard packages (example sizes)

Geometrical volume m ³	Net filling volume (95%) m ³	Outer diameter m	Tank length (without TCS)
76	73	3.6	10.9
100	95	3.6	13.9
124	118	3.6	16.9
142	135	4.2	14.0
175	167	4.2	17.0
209	199	4.2	20.0
249	237	5.3	16.4
300	285	5.3	19.4
352	335	5.3	22.4
385	366	6.0	19.8
450	428	6.0	22.5
516	491	6.0	25.8
600	570	6.9	23.2

Engine power

Engine brake power is stated in kW.

Ratings are given according to ISO 3046-1:2002.


According to ISO 15550:2002, the power figures in the tables are valid within a range of ±3% up to tropical conditions at sea level, i.e.:

- compressor inlet temperature 45 °C
- compressor inlet pressure 1,000 mbar
- sea water temperature 32 °C

Usually for four-stroke propulsion engines, the power is defined according to the ICN¹ (MCR) definition (ISO 3046-1:2002:ISO standard power).

For the load profile type Navy, of the engine types V28/33D STC, the rated power of the engine is stated according to the ICFN¹ power definition (ISO 3046:2002:ISO standard fuel stop power).

Load profile type: Navy (ICFN)

¹ I = ISO power

C = continuous power output

F = fuel stop power

N = net

Specific fuel oil consumption (SFOC) and heat rate

The stated consumption figures refer to the following reference conditions according to ISO 3046-1:

ambient air pressure: 1,000 mbar
 ambient air temperature: 25 °C (77 °F)

- charge air temperature: according to engine type, corresponding to

25 °C cooling water temperature before CAC

The figures are given with a tolerance of +5% and without engine driven pumps. Attached pumps and engines running in suction dredger operation will require additional fuel.

In accordance with the NO_X Technical Code 2008 of the International Maritime Organization, DM-grade fuel oil is used as reference fuel oil for engine tests and, thus, also forms the basis for the SFOC figures stated for engines in liquid fuel operation.

Unless otherwise specifically stated, SFOC figures are based on a lower calorific value of the fuel oil of 42,700 kJ/kg and, in addition for engines with common rail injection (CR-engines), on DMA-grade fuel oil (ISO 8217-2017). For engines with conventional fuel injection, SFOC figures are based on DMB-grade fuel oil (ISO 8217-2017). For further details, please refer to our engine specific project guides available from MAN Energy Solutions.

Specific lube oil consumption (SLOC)

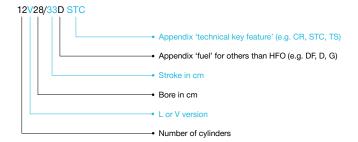
The specific lube oil consumption is specified at MCR (maximum continuous rating) with a tolerance of 20%.

Blocking of output

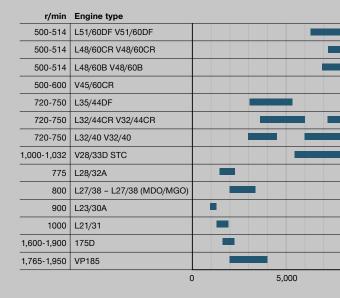
Blocking of output is made for engines driving a propeller at 100% of the rated output. For engines powering an alternator, blocking of output is made at 110%. However, operation above 100% load is only recommended for a short period of time for recovery and prevention of a frequency drop.

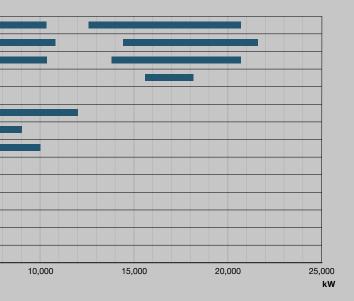
Weights and dimensions

For marine main engines, the weights stated refer to engines without a flywheel.


All weights given are without lube oil and cooling water.

For auxiliary engines (GenSets), weights refer to the unit (including alternator). The weight of the GenSet may vary depending on the alternator make.


The length of the GenSet unit depends on the alternator make. For a twin engine installation, the centreline distance is stated for each engine type.


The centreline distance for twin engine installation is given as a minimum value. Specific requirements to the passageway (e.g. of classification societies or flag state authority), seating type or a gallery can lead to higher values

Engine type designation

MAN four-stroke propulsion engines programme

MAN V51/60DF

Tier II Tier III Tier III in gas mode

High efficient variant

Bore: 510 mm. Stroke: 600 mm.

DO: 0. 01	o mini, otroke: ooo min	•	
Speed	r/min	514	500
mep	bar	20.0	20.6
		kW	kW
12V51/60	DDF	12,600	12,600
14V51/60	DDF	14,700	14,700
16V51/60	DDF	16,800	16,800
18V51/60	DDF	18,900	18,900

LHV of fuel gas ≥ 28,000 kJ/Nm3

(Nm³ corresponds to one cubic meter of gas at 0 °C and 1.013 bar)

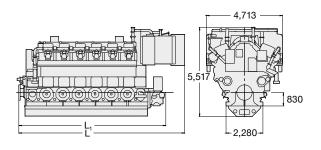
Specific fuel oil consumption (SFOC) and Heat rate to ISO conditions

MCR	100%	85%
Specific fuel oil consumption ¹⁾	179.5 g/kWh	177.0 g/kWh
Heat rate ²⁾	7,190 kJ/kWh	7,200 kJ/kWh

Specific lube oil consumption $^{3)}$: 0.38 g/kWh for nominal output 1,050 kW/cyl.

Engine type specific reference charge air temperature before cylinder 43 °C

1) Liquid fuel operation


²⁾ Gas operation (including pilot fuel), gas fuel: methane no. ≥ 80

3) Related to 100% actual engine load

Dimensions

Cyl. No.		12	14	16	18
L	mm	10,254	11,254	12,254	13,644
L ₁	mm	9,088	10,088	11,088	12,088
Dry mass	t	187	213	240	265

Minimum centreline distance for twin engine installation: 4,800 mm

MAN L51/60DF

High efficient variant

Bore: 510 mm, Stroke: 600 mm

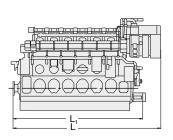
Speed	r/min	514	500
mep	bar	20.0	20.6
		kW	kW
6L51/60	DF	6,300	6,300
7L51/60	DF	7,350	7,350
8L51/60	DF	8,400	8,400
9L51/60	DF	9,450	9,450

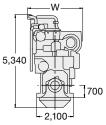
LHV of fuel gas ≥ 28,000 kJ/Nm³

(Nm³ corresponds to one cubic meter of gas at 0 °C and 1.013 bar)

Specific fuel oil consumption (SFOC) and Heat rate to ISO conditions

MCR	100%	85%
Specific fuel oil consumption ¹⁾	179.5 g/kWh	177.0 g/kWh
Heat rate ²⁾	7,190 kJ/kWh	7,200 kJ/kWh


Specific lube oil consumption³⁾: 0.38 g/kWh for nominal output 1,050 kW/cyl.


Engine type specific reference charge air temperature before cylinder 43 °C

Dimensions

Cyl. No.		6	7	8	9
L	mm	8,494	9,314	10,134	11,160
L ₁	mm	7,455	8,275	9,095	9,915
w	mm	3,165	3,165	3,165	3,283
Dry mass	t	106	119	135	148

Minimum centreline distance for twin engine installation: 3,200 mm

¹⁾ Liquid fuel operation

²⁾ Gas operation (including pilot fuel), gas fuel: methane no. ≥ 80

³⁾ Related to 100% actual engine load

MAN V51/60DF

Tier III in gas mode

High power variant

Bore: 510 mm. Stroke: 600 mm

Speed	r/min	514	500
mep	bar	21.9	22.5
		kW	kW
12V51/60	DDF	13,800	13,800
14V51/60	DDF	16,100	16,100
16V51/60	DDF	18,400	18,400
18V51/60	DDF	20,700	20,700

LHV of fuel gas ≥ 28,000 kJ/Nm3

(Nm³ corresponds to one cubic meter of gas at 0 °C and 1.013 bar)

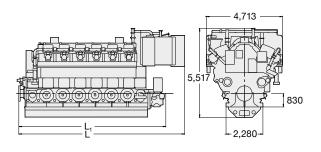
Specific fuel oil consumption (SFOC) and Heat rate to ISO conditions

MCR	100%	85%
Specific fuel oil consumption ¹⁾	186.0 g/kWh	182.0 g/kWh
Heat rate ²⁾	7,400 kJ/kWh	7,400 kJ/kWh

Specific lube oil consumption³⁾: 0.35 g/kWh for nominal output 1,150 kW/cyl.

Engine type specific reference charge air temperature before cylinder 43 °C

1) Liquid fuel operation


²⁾ Gas operation (including pilot fuel), gas fuel: methane no. ≥ 80

3) Related to 100% actual engine load

Dimensions

Cyl. No.		12	14	16	18
L	mm	10,254	11,254	12,254	13,644
L ₁	mm	9,088	10,088	11,088	12,088
Dry mass	t	187	213	240	265

Minimum centreline distance for twin engine installation: 4,800 mm

MAN L51/60DF

Tier III in gas mode

High power variant

Bore: 510 mm. Stroke: 600 mm

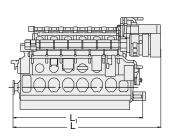
Speed	r/min	514	500
mep	bar	21.9	22.5
		kW	kW
6L51/60	DF	6,900	6,900
7L51/60	DF	8,050	8,050
8L51/60DF		9,200	9,200
9L51/60DF		10,350	10,350

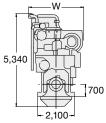
LHV of fuel gas ≥ 28,000 kJ/Nm³

(Nm³ corresponds to one cubic meter of gas at 0 °C and 1.013 bar)

Specific fuel oil consumption (SFOC) and Heat rate to ISO conditions

MCR	100%	85%
Specific fuel oil consumption ¹⁾	186.0 g/kWh	182.0 g/kWh
Heat rate ²⁾	7,400 kJ/kWh	7,400 kJ/kWh


Specific lube oil consumption³⁾: 0.35 g/kWh for nominal output 1,150 kW/cyl.


Engine type specific reference charge air temperature before cylinder 43 °C

Dimensions

Cyl. No.		6	7	8	9
L	mm	8,494	9,314	10,134	11,160
L ₁	mm	7,455	8,275	9,095	9,915
w	mm	3,165	3,165	3,165	3,283
Dry mass	t	106	119	135	148

Minimum centreline distance for twin engine installation: 3,200 mm

¹⁾ Liquid fuel operation

²⁾ Gas operation (including pilot fuel), gas fuel: methane no. ≥ 80

³⁾ Related to 100% actual engine load

MAN V48/60CR

Tier II Tier III

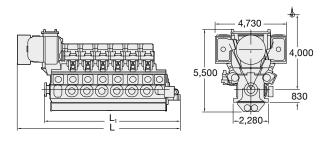
Tier III with SCR

Bore: 480 mm, Stroke: 600 mm

Speed	r/min	514	500
mep	bar	25.8	26.5
		kW	kW
12V48/6	0CR	14,400	14,400
14V48/6	0CR	16,800	16,800
16V48/60CR		19,200	19,200
18V48/60CR		21,600	21,600

Specific fuel oil consumption (SFOC) to ISO conditions

	85%
V48/60CR 182 g/kWh 173.	g/kWh


Specific lube oil consumption 1): 0.5 g/kWh for nominal output 1,200 kW/cyl.

Engine type specific reference charge air temperature before cylinder 37 °C

Dimensions

Cyl. No.		12	14	16	18
L	mm	10,790	11,790	13,140	14,140
L ₁	mm	9,088	10,088	11,088	12,088
Dry mass	t	189	213	240	265

Minimum centreline distance for twin engine installation: 4,800 mm

¹⁾ Related to 100% actual engine load

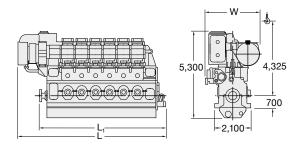
Tier III with SCR

Bore: 480 mm, Stroke: 600 mm

	o, ou ou o	•	
Speed	r/min	514	500
mep	bar	25.8	26.5
		kW	kW
6L48/60	CR	7,200	7,200
7L48/60	CR	8,400	8,400
8L48/60CR		9,600	9,600
9L48/60CR		10,800	10,800

Specific fuel oil consumption (SFOC) to ISO conditions

MCR	100%	85%
L48/60CR	184.0 g/kWh	175.5 g/kWh


Specific lube oil consumption¹⁾: 0.5 g/kWh for nominal output 1,200 kW/cyl.

Engine type specific reference charge air temperature before cylinder 37 °C

Dimensions

Cyl. No.		6	7	8	9
L	mm	8,760	9,580	10,540	11,360
L ₁	mm	7,455	8,275	9,095	9,915
w	mm	3,165	3,165	3,280	3,280
Dry mass	t	106	119	135	148

Minimum centreline distance for twin engine installation: 3,200 mm

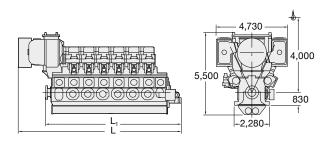
¹⁾ Related to 100% actual engine load

Bore: 480 mm, Stroke: 600 mm

Speed	r/min	514	500
mep	bar	24.7	25.4
		kW	kW
12V48/60E	<u> </u>	13,800	13,800
14V48/60B		16,100	16,100
16V48/60E	3	18,400	18,400
18V48/60B	1	20,700	20,700

Specific fuel oil consumption (SFOC) to ISO conditions

MCR	100%	85%
V48/60B	184 g/kWh	180 g/kWh


Specific lube oil consumption¹⁾: 0.46 g/kWh for nominal output 1,150 kW/cyl.

Engine type specific reference charge air temperature before cylinder 37 °C

Dimensions

Cyl. No.		12	14	16	18
L	mm	10,790	11,790	13,140	14,140
L,	mm	9,088	10,088	11,088	12,088
Dry mass	t	186	209	240	259

Minimum centreline distance for twin engine installation: 4,800 mm

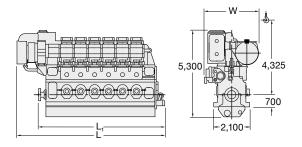
¹⁾ Related to 100% actual engine load

Tier III with SCR

Bore: 480 mm, Stroke: 600 mm

Bore: 400 mm, Groke: 600 mm				
Speed	r/min	514	500	
mep	bar	24.7	25.4	
		kW	kW	
6L48/60	В	6,900	6,900	
7L48/60	В	8,050	8,050	
8L48/60B		9,200	9,200	
9L48/60	В	10,350	10,350	

Specific fuel oil consumption (SFOC) to ISO conditions


MCR	100%	85%
L48/60B	186 g/kWh	182 g/kWh
Specific lube oil co	onsumption ¹⁾ : 0.46 g/kWh for nomina	ıl output 1,150 kW/cyl.

Engine type specific reference charge air temperature before cylinder 37 °C

Dimensions

Cyl. No.		6	7	8	9
L	mm	8,760	9,580	10,540	11,360
L,	mm	7,455	8,275	9,095	9,915
W	mm	3,165	3,165	3,280	3,280
Dry mass	t	104	118	134	146

Minimum centreline distance for twin engine installation: 3,200 mm

¹⁾ Related to 100% actual engine load

MAN V45/60CR

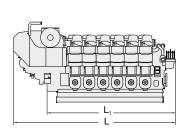
Tier III with SCF

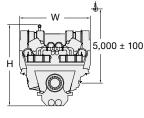
Bore: 450 mm, Stroke: 600 mm

Speed r/min	6	600
mep bar	2	7.3
		kW
12V45/60CR	15,6	006
14V45/60CR	18,2	200

Specific fuel oil consumption (SFOC) to ISO conditions

MCR	100%	85%
V45/60CR	170.0 g/kWh	166.0 g/kWh


Specific lube oil consumption 1): 0.5 g/kWh for nominal output 1,300 kW/cyl.


Engine type specific reference charge air temperature before HP TC 43 $^{\circ}\text{C}\,/$ before cylinder 37 $^{\circ}\text{C}$

Dimensions

Cyl. No.		12	14
L	mm	11,330	12,310
L,	mm	10,590	11,570
w	mm	4,970	4,970
Н	mm	5,240	5,240
Dry mass	t	204	230

Minimum centreline distance for twin engine installation: 5,050 mm

Related to 100% actual engine load

Tier III in gas mode

Bore: 350 mm. Stroke: 440 mm

Speed	r/min	750	720
mep	bar	20.0	20.1
		kW	kW
6L35/4	4DF	3,180	3,060
7L35/44DF		3,710	3,570
8L35/4	4DF	4,240	4,080
9L35/44DF		4,770	4,590
10L35/4	4DF	5,300	5,100

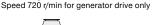
LHV of fuel gas ≥ 28,000 kJ/Nm³

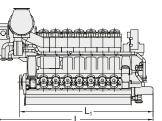
(Nm³ corresponds to one cubic meter of gas at 0 °C and 1.013 bar)

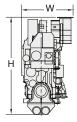
Specific fuel oil consumption (SFOC) and Heat rate to ISO conditions

MCR		100%	85%
Specific fuel oil	6L	179.5 g/kWh	175.5 g/kWh
consumption1)	7L-10L	178.5 g/kWh	175.5 g/kWh
Heat rate ²⁾		7,410 kJ/kWh	7,440 kJ/kWh

Specific lube oil consumption 3 : 0.5 g/kWh for nominal output 530 kW/cyl. or 0.52 g/kWh for nominal output 510 kW/cyl.


Engine type specific reference charge air temperature before cylinder 40 °C


Dimensions


Cyl. No.		6	7	8	9	10
L	mm	6,485	7,015	7,545	8,075	8,605
L ₁	mm	5,265	5,877	6,407	6,937	7,556
w	mm	2,539	2,678	2,678	2,678	2,678
Н	mm	4,163	4,369	4,369	4,369	4,369
Dry mass ⁴⁾	t	43.1	48.2	53.3	57.6	62.3

Minimum centreline distance for twin engine installation: 2,500 mm

⁴⁾ Including built-on lube oil automatic filter, fuel oil filter and electronic equipment

¹⁾ Liquid fuel operation

²⁾ Gas operation (including pilot fuel), gas fuel: methane no. ≥ 80

³⁾ Related to 100% actual engine load

MAN V32/44CR

Tier II Tier III EPA Tier 2

Tier III with SCF

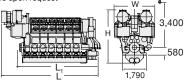
Bore: 320 mm, Stroke: 440 mm

Speed	r/min	750	720
mep	bar	27.1	28.3
		kW	kW
12V32/4	4CR	7,200	7,200
14V32/44CR ¹⁾		8,120	8,120
16V32/44CR		9,600	9,600
18V32/4	4CR ²⁾	10,800	10,800
20V32/44CR		12,000	12,000

Specific fuel oil consumption (SFOC) to ISO conditions

MCR	100%	85%
V32/44CR	175.5 g/kWh	172.0 g/kWh
14V32/44CR	175.5 g/kWh	173.0 g/kWh
V32/44CR FPP	176.5 g/kWh	172.5 g/kWh
14V32/44CR FPP	177.5 g/kWh	174.0 g/kWh

Specific lube oil consumption³⁾: 0.5 g/kWh for nominal output 600 kW/cyl., 0.52 g/kWh for nominal output 580 kW/cyl., 0.55 g/kWh for nominal output 550 kW/cyl.


Engine type specific reference charge air temperature before cylinder 40 °C

Dimensions

Dillicitorono						
Cyl. No.		12	14	16	18	20
L	mm	7,195	7,970	8,600	9,230	9,860
L ₁	mm	5,795	6,425	7,055	7,685	8,315
w	mm	3,100	3,100	3,100	3,100	3,100
Н	mm	4,039	4,262	4,262	4,262	4,262
Dry mass ⁴⁾	t	70	79	87	96	104

Minimum centreline distance for twin engine installation: 4,000 mm Speed 720 r/min for generator drive/constant speed operation only

Wet oil sump available upon request

^{1) 580} kW/cyl.

^{2) 18}V32/44CR available rigidly mounted only

³⁾ Related to 100% actual engine load

⁴Including built-on lube oil automatic filter, fuel oil filter and electronic equipment Fixed pitch propeller: 550 kW/cyl., 750 r/min

Tier III with SCR

Bore: 320 mm, Stroke: 440 mm

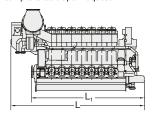
Speed	r/min	750	720
mep	bar	27.1	28.3
		kW	kW
6L32/4	4CR	3,600	3,600
7L32/4	4CR ¹⁾	4,060	4,060
8L32/4	4CR	4,800	4,800
9L32/4	4CR	5,400	5,400
10L32/4	4CR	6,000	6,000

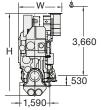
Specific fuel oil consumption (SFOC) to ISO conditions

MCR	100%	85%
L32/44CR	175.5 g/kWh	172.0 g/kWh
7L32/44CR	175.5 g/kWh	173.0 g/kWh
L32/44CR FPP	176.5 g/kWh	172.5 g/kWh
7L32/44CR FPP	177.5 g/kWh	174.0 g/kWh

Specific lube oil consumption²⁾: 0.5 g/kWh for nominal output 600 kW/cyl., 0.52 g/kWh for nominal output 580 kW/cyl., 0.55 g/kWh for nominal output 550 kW/cyl.

Engine type specific reference charge air temperature before cylinder 40 °C


Dimensions


Cyl. No.		6	7	8	9	10
L	mm	6,312	6,924	7,454	7,984	8,603
L ₁	mm	5,265	5,877	6,407	6,937	7,556
w	mm	2,174	2,359	2,359	2,359	2,359
H	mm	4,163	4,369	4,369	4,369	4,369
Dry mass ³⁾	t	39.5	44.5	49.5	53.5	58.0

Minimum centreline distance for twin engine installation: 2,500 mm Speed 720 r/min for generator drive/constant speed operation only

1) 580 kW/cyl.

Wet oil sump available upon request

²⁾ Related to 100% actual engine load

³⁾ Including built-on lube oil automatic filter, fuel oil filter and electronic equipment Fixed pitch propeller: 550 kW/cyl., 750 r/min

Bore: 320 mm, Stroke: 400 mm

Speed	r/min	750	720
mep	bar	24.9	25.9
		kW	kW
12V32/40		6,000	6,000
14V32/40		7,000	7,000
16V32/40		8,000	8,000
18V32/40		9,000	9,000

Specific fuel oil consumption (SFOC) to ISO conditions

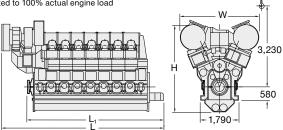
MCR	100%	85%
V32/40	184 g/kWh	182 g/kWh
V32/40 FPP	187 g/kWh	183 g/kWh

Specific lube oil consumption¹⁾: 0.5 g/kWh for nominal output 500 kW/cyl., 0.56 g/kWh for nominal output 450 kW/cyl.

Engine type specific reference charge air temperature before cylinder 43 °C

Dimensions

Cyl. No.		12	14	16	18
L	mm	6,915	7,545	8,365	8,995
L,	mm	5,890	6,520	7,150	7,780
w	mm	3,140	3,140	3,730	3,730
Н	mm	4,100	4,100	4,420	4,420
Dry mass	t	61	68	77	85


Minimum centreline distance for twin engine installation: 4,000 mm

Speed 720 r/min for generator drive/constant speed operation only

Fixed pitch propeller: 450 kW/cyl., 750 r/min

V32/40 as marine main engine to be applied for multi-engine plants only

1) Related to 100% actual engine load

Bore: 320 mm. Stroke: 400 mm

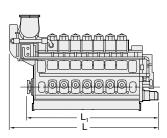
	, 		
Speed	r/min	750	720
mep	bar	24.9	25.9
		kW	kW
6L32/40		3,000	3,000
7L32/40		3,500	3,500
8L32/40		4,000	4,000
9L32/40		4,500	4,500

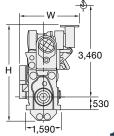
Specific fuel oil consumption (SFOC) to ISO conditions

MCR	100%	85%
L32/40	186 g/kWh	183 g/kWh
L32/40 FPP	189 g/kWh	184 g/kWh

Specific lube oil consumption $^9\!\!:$ 0.5 g/kWh for nominal output 500 kW/cyl., 0.56 g/kWh for nominal output 450 kW/cyl.

Engine type specific reference charge air temperature before cylinder 43 °C


Dimensions


Cyl. No.		6	7	8	9
L	mm	5,940	6,470	7,000	7,530
L ₁	mm	5,140	5,670	6,195	6,725
w	mm	2,630	2,630	2,715	2,715
Н	mm	4,010	4,010	4,490	4,490
Dry mass	t	38	42	47	51

Minimum centreline distance for twin engine installation: 2,500 mm² Speed 720 r/min for generator drive/constant speed operation only Fixed pitch propeller: 450 kW/cyl., 750 r/min

1) Related to 100% actual engine load

Please contact MAN Energy Solutions for the precise information about the centreline distance for two engines with the same cylinder number standing near each other

145

MAN V28/33D STC

Tier III with SCR

			Load profile 'Navy'
Speed	r/min	1,000	1,032
mep	bar	26.9	28.6
Rated pow	er output	- ICN (MCR) kW	- ICFN kW
12V28/33D	STC	5,460	6,000
16V28/33D STC		7,280	8,000
20V28/33D STC		9,100	10,000

Specific fuel oil consumption (SFOC) to ISO conditions

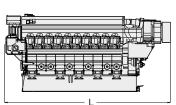
ICFN fuel stop power	<u>-</u>	193.0 g/kWh
MCR 100%	189.0 g/kWh	189.0 g/kWh
MCR 85%	184.5 g/kWh	194.5 g/kWh

Specific lube oil consumption 1): 0.4 g/kWh for nominal output 455 kW/cyl.

Engine type specific reference charge air temperature before cylinder 40 °C

Figures on theoretical propeller curve for distillates according to ISO 8217 DMA, with all attached pumps

Dimensions


Cyl. No.		12	16	20
L	mm	6,207	7,127	8,047
H ²⁾	mm	3,417	3,417	3,417
H ³⁾	mm	3,682	3,682	3,682
Dry mass ⁴⁾	t	36.0	43.5	51.2

¹⁾ Related to 100% actual engine load

attached pumps, oil filters and lube oil cooler

V28/33D STC as marine main engine to be applied for multi-engine plants only in

class-approved vessels

2.473

²⁾ With low oilsump

³⁾ With deep oilsump

Weight and performance parameters refer to engine with flywheel, TC silencer,

⁴⁾ Tolerance: 5%

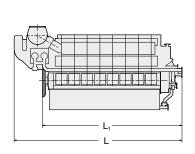
Bore: 280 mm, Stroke: 320 mm

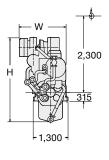
Speed	r/min	775
mep	bar	19.3
		kW
6L28/32	2A	1,470
7L28/32	2A ¹⁾	1,715
8L28/32	2A	1,960
9L28/32	2A	2,205

Specific fuel oil consumption (SFOC) to ISO conditions

MCR	100%	85%
L28/32A	194 g/kWh	192 g/kWh
L28/32A FPP	194 g/kWh	192 g/kWh

Specific lube oil consumption 1.0 g/kWh


Engine type specific reference charge air temperature before cylinder 40 °C


Dimensions

Cyl. No.		6	7	8	9
L	mm	5,330	5,810	6,290	6,770
L,	mm	4,340	4,750	5,230	5,780
w	mm	1,732	1,732	1,732	1,844
Н	mm	3,186	3,186	3,186	3,242
Dry mass	t	18.0	20.5	23.0	25.5

Minimum centreline distance for twin-engine installation: 2,000 mm

¹⁾ Not available for fixed pitch propeller (FPP)

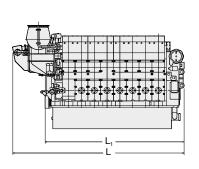
Bore: 270 mm, Stroke: 380 mm

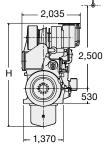
Speed	r/min	800	800 (MDO ¹⁾ /MGO)
mep	bar	23.5	25.2
		kW	kW
6L27/38		2,040	2,190
7L27/38		2,380	2,555
8L27/38		2,720	2,920
9L27/38		3,060	3,285

Specific fuel oil consumption (SFOC) to ISO conditions

MCR		100%			
	340 kW	365 kW	340 kW	365 kW	
L27/38	188 g/kWh	191 g/kWh	185 g/kWh	186 g/kWh	
L27/38 FPP	187 g/kWh	191 g/kWh	181 g/kWh	185 g/kWh	

Specific lube oil consumption 0.8 g/kWh


Engine type specific reference charge air temperature before cylinder 40 °C


Dimensions

Dillicitoronic	,				
Cyl. No.		6	7	8	9
L	mm	5,070	5,515	5,960	6,405
L ₁	mm	3,962	4,407	4,852	5,263
Н	mm	3,555	3,687	3,687	3,687
Dry mass	t	29.0	32.5	36.0	39.5

Minimum centreline distance for twin engine installation: 2,500 mm

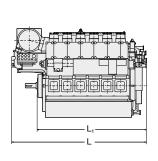
1) MDO viscosity must not exceed 6 mm²/s = cSt at 40 °C.

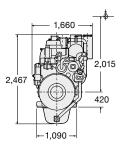
Bore: 225 mm, Stroke: 300 mm

Speed	r/min	900
mep	bar	17.1
		kW
6L23/30	Α	960
8L23/30/	Δ.	1.280

Specific fuel oil consumption (SFOC) to ISO conditions

MCR	100%	85%
L23/30A	194 g/kWh	193 g/kWh
L23/30A FPP	194 g/kWh	193 g/kWh


Specific lube oil consumption 1.0 g/kWh


Engine type specific reference charge air temperature before cylinder 40 °C

Dimensions

Cyl. No.		6	8
L	mm	3,737	4,477
L ₁	mm	3,062	3,802
Dry mass	t	11.0	13.5

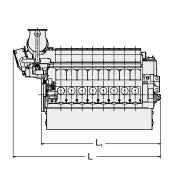
Minimum centreline distance for twin engine installation: 1,900 mm

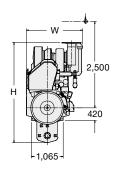
Bore: 210 mm, Stroke: 310 mm

Speed	r/min	1,000
mep	bar	24.0
		kW
6L21/31		1,290
7L21/31		1,505
8L21/31		1,720
9L21/31		1,935

Specific fuel oil consumption (SFOC) to ISO conditions

MCR	100%	85%
L21/31	195 g/kWh	192 g/kWh


Specific lube oil consumption 0.8 g/kWh


Engine type specific reference charge air temperature before cylinder 40 °C

Dimensions

	6	7	8	9
mm	4,544	4,899	5,254	5,609
mm	3,424	3,779	4,134	4,489
mm	3,113	3,267	3,267	3,267
mm	1,695	1,695	1,820	1,820
t	16.0	17.5	19.0	20.5
	mm	mm 4,544 mm 3,424 mm 3,113 mm 1,695	mm 4,544 4,899 mm 3,424 3,779 mm 3,113 3,267 mm 1,695 1,695	mm 4,544 4,899 5,254 mm 3,424 3,779 4,134 mm 3,113 3,267 3,267 mm 1,695 1,695 1,820

Minimum centreline distance for twin engine installation: 2,400 mm

Bore: 185 mm. Stroke: 196 mm

				SFOC at 100% MCR	SFOC at 75% MCR
Engine model	Rating definition	kW	rpm	g/kWh	g/kWh
12VP185TM	B: Unrestricted Marine	2,000	1,765	208	202
12VP185TM	A2: Unrestricted Marine	2,300	1,860	211	203
12VP185TM	A1: Limited Time	2,720	1,950	216	205
18VP185TM	B: Unrestricted Marine	3,000	1,765	208	202
18VP185TM	A2: Unrestricted Marine	3,500	1,860	211	203
18VP185TM	A1: Limited Time	4,000	1,950	216	205

Specific fuel oil consumption according to ISO 3046-1:2002 based on a lower calorific value of fuel of 42,700 kJ/kg with all driven lube oil, HT and LT water pumps attached, fulfilling IMO Tier II emissions limitations of +5% SFOC tolerance. 45°C ambient 32°C sea water.

Rating definitions:

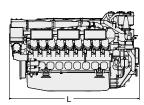
A1 rating

For fast patrol craft where the rated power is only required for approximately 15% of the operating profile.

A2 rating

For fast patrol or displacement craft where 90% to 100% of rated power is likely to be used for 70% of the operating profile.

B rating


Typically for longer range displacement vessels where 70% to 100% of the rated power is likely to be used for >70% of the operating profile.

Dimensions

Cyl. No.		12	18
L	mm	3,200	4,039
Н	mm	2,312	2,447
W	mm	1,692	1,692
Dry mass ¹⁾	t	7.8	11.1

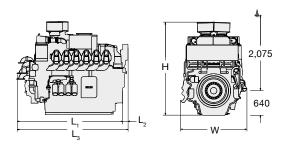
¹⁾ Approximately

Engine dry weight includes the engine mounted sea water heat exchanger and oil cooler. The dimensions given are for guidance only.

Bore: 175 mm. Stroke: 215 mm

				SFOC at 100% MCR	SFOC at 75% MCR	Avg.
				Tier II/Tier III	Tier II/Tier III	Load ¹⁾
Engine model	Rating def.	kW	rpm	g/kWh	g/kWh	%
12V175D-MH	Heavy Duty	1,499	1,800	204.0/206.0	206.0/208.0	100
12V175D-MH	Heavy Duty	1,499	1,600	195.0/197.0	199.0/201.0	100
12V175D-MH	Heavy Duty	1,740	1,800	198.0/201.0	202.5/205.5	85
12V175D-MM	Medium Duty	1,860	1,800	199.5/201.5	198.0/200.0	80
12V175D-MM	Medium Duty	2,040	1,800	195.0/198.0	199.5/202.5	70
12V175D-MM	Medium Duty	2,220	1,800	195.5/198.5	196.9/199.0	40
12V175D-MM	Medium Duty	2,220	1,900	197.0/200.0	199.0/201.0	65
12V175D-MM 12V175D-MM	Medium Duty Medium Duty	2,040	1,800	195.0/198.0 195.5/198.5	199.5/202.5 196.9/199.0	-

¹⁾ Average load up to.


For multi-engine arrangement only. SFOC figures for distillates according to ISO 8217 DMA, with attached lube oil, HT and LT-cooling water pumps.

Dimensions

Cyl. No.		12
L ₁	mm	2,747.5
L ₂	mm	145.5
L ₃	mm	2,893
Н	mm	2,424
W	mm	1,721
Dry weight ²⁾	t	9.000

²⁾ Approximately

Engine dry weight does not include optional sea water cooler and may vary due to various configurations. The dimensions given are for guidance only.

MAN four-stroke marine GenSets

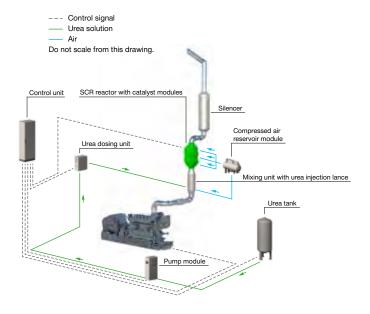
MAN four-stroke marine GenSets - all emission requirements

Besides focus on power density and fuel economy, MAN Energy Solutions is committed to a steady reduction of the environmental impact of our engines.

IMO Tier II

MAN Energy Solutions has decreased NO_x emissions significantly by applying well-proven methods that ensure a cleaner and more efficient combustion process. Our four-stroke propulsion engines are IMO Tier II compliant by internal engine measures alone.

IMO Tier III


For operation in emission control areas (ECA), MAN Energy Solutions has developed a comprehensive range of selective catalytic reduction (SCR) systems that provides a tremendous reduction in NO_x levels surpassing IMO Tier III requirements.

MAN Energy Solutions is the first manufacturer to successfully produce and offer IMO Tier III compliant four-stroke marine engines based on a fully modular SCR kit covering our entire four-stroke engine portfolio.

In 2014 MAN Energy Solutions was awarded the first IMO Tier III EIAPP certificate together with the classification society DNV-GL.

MAN Energy Solutions' standard SCR system is available in fourteen different sizes covering our entire portfolio of four-stroke engines. Customised SCR systems are offered on demand.

MAN has developed a complete range of SCR systems that work perfectly with our engines for maximum system efficiency. The intelligent exhaust gas temperature control enables significant savings in fuel consumption as compared to third party supplier systems. MAN SCR systems work with MGO, MDO and HFO with up to 3.5% sulphur.

MAN GenSet plant with complete SCR system

100% MCR PTO-solutions for L21/31 and L27/38 GenSets

Optimised for both new and existing ship designs.

PTO on alternator - external pump

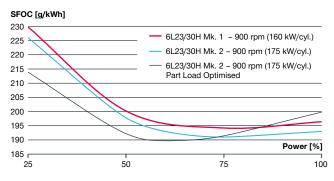
Pump on alternator - common base frame

PTO on front end - external pump (new feature)

Pump on front end - common base frame (new feature)

Fuel oil saving for small bore GenSet (part load optimised)

GenSets can be delivered with improved fuel oil consumption at low load and part load. The penalty will be higher SFOC at high load. The part-load optimised engine complies with the IMO Tier II limit.


The new tuning method, referred to as part-load optimisation, optimises the engine performance at approx. 60-65% MCR, as this is often the load range in which the GenSet is operating, but it can also be customised to other specific operating conditions.

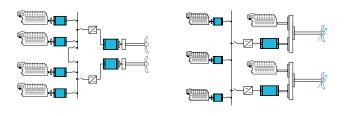
With part load optimisation, fuel oil savings of up to 12 g/kWh can be obtained, depending on the engine type/model and load point.

Traditionally, GenSets are optimised at 85% MCR, because the power management system will engage additional GenSets when more power is needed.

With part-load optimisation, there is a fuel oil penalty when the load exceeds approx. 80% MCR, but this has no practical consequence as the GenSet rarely exceeds 85% MCR.

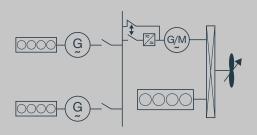
This is illustrated in the figure below. For further information, please contact MAN Energy Solutions.

Based on Project Guide figures for IMO Tier II engines – 60Hz: ISO reference condition, HFO/MDO, without pumps, tolerance +5% (not included)


Electric and hybrid propulsion power trains (HyProp ECO)

MAN Energy Solutions offers a full range of electric and hybrid propulsion power trains. Our solutions are designed and optimised to meet the highest efficiencies of a complete propulsion plant system covering the complete operational profile of the vessel. Our propulsion systems provide a well-balanced and tailor-made solution with emphasis on increased fuel efficiency, flexibility and performance.

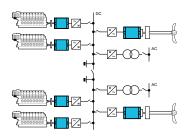
Our comprehensive propulsion packages include the complete array of required components from GenSets to propulsors, including switchboards, variable speed drives and propulsion motors. Full electric propulsion power trains as well as hybrid systems ensure the optimal technical and economical solution while maximising power demand flexibility.


With HyPrpo ECO a hybrid propulsion system was introduced to the market for controlling the power delivered by or to the shaft machine. It overcomes the constraint on constant speed propulsion machinery by utilising variable speed drives at the shaft generator/motor.

Our new developed HyProp battery system also integrates batteries which enable an optimised loading of our engines, and provide electrical spinning reserve, dynamic support of the propellers as well as peak shaving.

High-efficient and customised power trains for electric and hybrid propulsion applications

HyProp ECO Hybrid propulsion system



Energy saving electric propulsion (EPROX-DC)

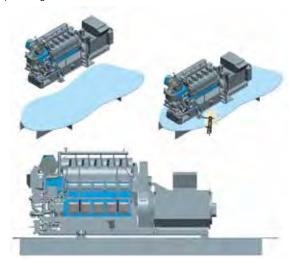
Recent developments in electric propulsion have resulted in electric systems where engines can operate at variable speed. The "classic" constant speed operation of GenSets is no longer a constraint. Utilising an enlarged engine operation map with a speed range of 60% to 100% paves the way to a high potential in fuel oil savings. Each speed set point of the engines can be adjusted independently in order to achieve a minimum fuel oil consumption according to the system load. The electric system using DC distribution enables a decoupled operation of the engines, propulsion drives, and other consumers of energy.

Another major advantage is the possible integration of energy storage sources, like batteries. They can reduce the transient loads on the engines and improve the dynamic response of the propulsion system. Fast load application is removed from the engines and load peaks are shaved. Also, emission free propulsion can be realized when running on the batteries. In addition, the energy storage sources will have a positive effect on engine maintenance.

MAN Energy Solutions offers this advanced package solution in close cooperation with our partner Aspin Kemp & Associates.

EPROX-DC energy-saving electric propulsion plant

EPROX-DC propulsion solution


MAN L23/30H monocogue GenSet - continued development

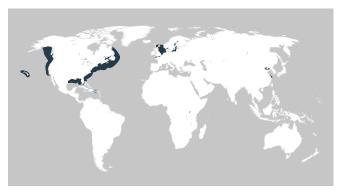
The monocoque GenSet includes several updates of the tried and tested L23/30H engine, which are focused on weight reduction, vibration optimisation and simplified installation.

The most significant update is that the alternator is now a load-bearing component, with a 'top brace' connection to the engine. This enables up to 63% weight reduction of the base frame, which again results in weight reduction of up to 13% of the GenSet and a lower vibration level.

The three and four point 'deck-level' supports significantly simplify the GenSet installation process. This design is installed on a flat deck, which is a major reduction of the vessels foundation structure. Furthermore, applying only three conicals makes the GenSets self-leveling.

The monocoque GenSet application is available for all variants of the L23/30H engine.

Monocoque GenSet


Marine fuels after 2020 (in accordance with ISO 8217)

From 1 January 2020, the global 0.5% limit for sulphur content in marine fuels enters into force. To ensure compliant operation, one of following methods must be used:

- HFO GenSet running on a compliant low-sulphur fuel oil (LSFO) in accordance with ISO 8217.
- Global: max 0.5% sulphur (VLSFO).
- ECA: max 0.1% sulphur (ULSFO).
- HFO GenSet running on a high-sulphur fuel oil (HSFO) in accordance with ISO 8217 and with a SO_X scrubber for exhaust gas cleaning.
- DF GenSet running on LNG with a compliant pilot distillate fuel.

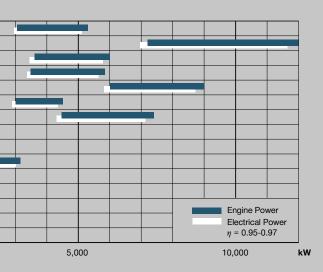
MAN GenSets have for decades been running on low-sulphur and low-viscosity fuels on small power plants on Greenland. The many years of experience have been transferred to the standard marine GenSet. To be prepared for operation on compliant fuels after 2020, the HFO GenSets will be updated with optimised fuel pumps and inlet/exhaust valve materials for low-viscosity fuels.

It is important to note that paraffinic and aromatic fuels are incompatible and should not be mixed in the same fuel tank. Notice the issued Service Letters, PrimeServ Customer Information and follow MAN guidelines.

■ ECAs - 0.10% S (effective 2015)

[■] Global sulfur cap – 0.50% S (effective 2020)

MAN four-stroke marine GenSets programme


r/min	Engine type		
720-750	L35/44DF		
720-750	V32/44CR		
720-750	L32/44CR		
720-750	L32/44		
720-750	V32/40		
720-750	L32/40		
900-1,000	PA6 B OG		
720-750	L28/32H		
720-750	L28/32DF		
720-750	L27/38 - L27/38 (MDO/MGO)		
720-900	L23/30DF		
720-900	L23/30H Mk 3		
720-900	L23/30H Mk 2		
900-1,000	L21/31		
1,500-1,800	175D		

0

GenSets

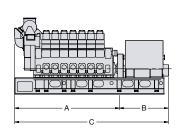
GenSets can be applied as auxiliary GenSets, GenSets for electric propulsion or for offshore applications.

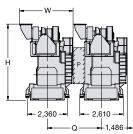
Project specific demands can be clarified at an early project stage.

Tier III GenSets

Four-stroke GenSets are Tier III compatible when a downstream SCR is added to clean the exhaust gas on a Tier II engine. The additional SCR will only have an impact on SFOC if the backpressure is increased.

Tier III in gas mode


Bore: 350 mm, Stroke: 440 mm


Speed r/r	min		750		720
Frequency	Hz		50		60
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾
6L35/44DF		3,180	3,069	3,060	2,953
7L35/44DF		3,710	3,580	3,570	3,445
8L35/44DF		4,240	4,092	4,080	3,937
9L35/44DF		4,770	4,603	4,590	4,429
10L35/44DF		5,300	5,115	5,100	4,922

Dimensions²⁾

Cyl. no.		6	7	8	9	10
A	mm	6,270	6,900	7,480	8,110	8,690
B ³⁾	mm	3,900	4,100	4,400	4,600	4,800
C ₃₎	mm	10,170	11,000	11,880	12,710	13,490
w	mm	2,958	3,108	3,108	3,108	3,108
Н	mm	4,631	4,867	4,867	4,867	4,867
Dry mass ³⁾	t	85	94	103	110	118

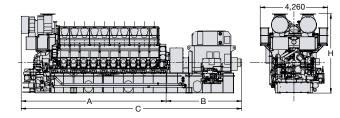
¹⁾ Based on nominal generator efficiencies of 96.5%

- P Free passage between the engines, width 600 mm and height 2,000 mm Q Minimum distance between centre of engines: ~3,400 mm (with gallery)

²⁾ Dimensions are not finally fixed

Depending on alternator applied

MAN V32/44CR


Tier II Tier III EPA Tier 2

Bore: 320 mm, Stroke: 440 mm

Speed	r/min		750		720
Frequency	Hz		50		60
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾
12V32/44CR		7.200	6.984	7.200	6.984
14V32/44CR	2)	8.120	7.876	8.120	7.876
16V32/44CR		9,600	9,312	9,600	9,312
18V32/44CR	3)	10,800	10,476	10,800	10,476
20V32/44CR		12,000	11,640	12,000	11,640

	12	14	16	18	20
mm	5,382	6,012	6,642	7,272	7,902
mm	4,201	4,201	4,201	4,201	4,201
mm	11,338	11,968	12,598	13,228	13,858
mm	5,014	5,014	5,014	5,014	5,014
t	117	131	144	159	172
	mm	mm 5,382 mm 4,201 mm 11,338 mm 5,014	mm 5,382 6,012 mm 4,201 4,201 mm 11,338 11,968 mm 5,014 5,014	mm 5,382 6,012 6,642 mm 4,201 4,201 4,201 mm 11,338 11,968 12,598 mm 5,014 5,014 5,014	mm 5,382 6,012 6,642 7,272 mm 4,201 4,201 4,201 4,201 mm 11,338 11,968 12,598 13,228 mm 5,014 5,014 5,014 5,014

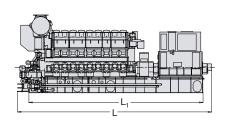
¹⁾ Based on nominal generator efficiencies of 97%

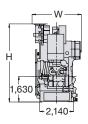
^{2) 580} kW/cyl.

^{3) 18}V32/44CR available rigidly mounted only Frame Auxiliary Box (FAB) available upon request

Tier III with SCR

Bore: 320 mm. Stroke: 440 mm


Speed r/min		750		720
Frequency Hz		50		60
	Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾
6L32/44CR	3,600	3,474	3,600	3,474
7L32/44CR ²⁾	4,060	3,918	4,060	3.918
8L32/44CR	4,800	4,632	4,800	4,632
9L32/44CR	5,400	5,211	5,400	5,211
10L32/44CR	6,000	5,790	6,000	5,790


Dimensions

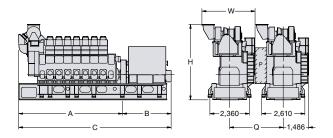
Cyl. no.		6	7	8	9	10
L	mm	10,738	11,268	11,798	12,328	12,858
L ₁	mm	10,150	10,693	11,236	11,779	12,309
w	mm	2,490	2,490	2,573	2,573	2,573
Н	mm	4,768	4,768	4,955	4,955	4,955
Dry mass	t	71	78	84	91	97

¹⁾ Based on nominal generator efficiencies of 96.5%

Frame Auxiliary Box (FAB) available upon request

Free passage between the engines, width 600 mm and height 2,000 mm Minimum distance between centre of engines: \sim 2,835 mm (without gallery) \sim 3,220 mm (with gallery)

^{2) 580} kW/cyl.

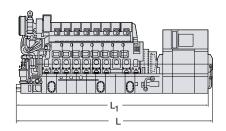

Exclusively for auxiliary GenSet operation. High power density and space saving GenSet with conventional injection and optimised SFOC for part-load operation.

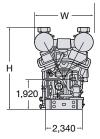
Bore: 320 mm, Stroke: 440 mm

Speed	r/min		750		720
Frequency	Hz		50		60
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾
6L32/44		3,498	3,375	3,498	3,375
8L32/44		4,664	4,500	4,664	4,500
9L32/44		5,247	5,063	5,247	5,063
10L32/44		5,830	5,625	5,830	5,625

Cyl. no.		6	8	9	10
A	mm	6,470	7,531	8,061	8,590
В	mm	3,990	4,229	4,529	4,530
С	mm	10,460	11,760	12,590	13,120
w	mm	2,845	3,054	3,105	3,105
Н	mm	4,701	4,887	4,887	4,887
Dry mass	t	82	98	107	113

¹⁾ Based on nominal generator efficiencies of 96.5%

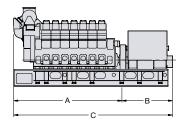

- P Free passage between the engines, width 600 mm and height 2,000 mm
- Q Minimum distance between centre of engines: ~2,835 mm (with gallery)

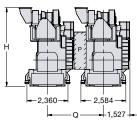

Bore: 320 mm, Stroke: 400 mm

Speed	r/min		750		720
Frequency	Hz		50		60
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾
12V32/40		6,000	5,820	6,000	5,820
14V32/40		7,000	6,790	7,000	6,790
16V32/40		8,000	7,760	8,000	7,760
18V32/40		9,000	8,730	9,000	8,730

Cyl. no.		12	14	16	18
L	mm	11,045	11,710	12,555	13,185
L ₁	mm	10,450	11,115	11,950	12,580
w	mm	3,365	3,365	3,730	3,730
Н	mm	4,850	4,850	5,245	5,245
Dry mass	t	101	113	126	138

¹⁾ Based on nominal generator efficiencies of 97%


Tier III with SCF


Bore: 320 mm, Stroke: 400 mm

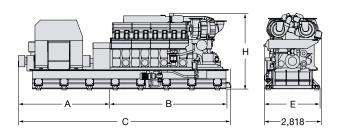
Speed	r/min		750		720	
Frequency	Hz	Hz 50			60	
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾	
6L32/40		3,000	2,895	3,000	2,895	
7L32/40		3,500	3,378	3,500	3,378	
8L32/40		4,000	3,860	4,000	3,860	
9L32/40		4,500	4,343	4,500	4,343	

Cyl. no.		6	7	8	9
A	mm	6,340	6,870	7,400	7,930
В	mm	3,415	3,415	3,635	3,635
С	mm	9,755	10,285	11,035	11,565
H	mm	4,622	4,622	4,840	4,840
Dry mass	t	75.0	79.0	87.0	91.0

¹⁾ Based on nominal generator efficiencies of 96.5%

- P Free passage between the engines, width 600 mm and height 2,000 mm Q Minimum distance between centre of engines: ~2,835 mm (without gallery) ~3,220
- Q Minimum distance between centre of engines: ~2,835 mm (without gallery) ~3,220 mm (with gallery)

Bore 280 mm, Stroke 330 mm


Speed	r/min		1,000		900	
Frequency	Hz		50		60	
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾	
12PA6 B		4,440	4,307	4,200	4,074	
16PA6 B		5,920	5,742	5,600	5,432	
18PA6 B		6,660	6,460	6,300	6,111	
20PA6 B		7,400	7,178	7,000	6,790	

Dimensions²⁾

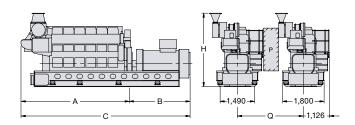
Cyl. no.		12	16	18	20
A	mm	4,370	4,727	4,732	4,770
В	mm	4,600	5,637	6,097	6,557
С	mm	9,287	10,583	11,048	11,547
Н	mm	3,695	3,695	3,695	3,695
E	mm	2,670	2,670	2,670	2,670
Dry mass ³⁾	t	60	72	80	85

¹⁾ Nominal generator efficiencies: 97%

Permissible overload of 10% for 1 hour every other 12 hours of operation

²⁾ Dimensions are based on operation under inclination up to 25 degrees in any direction

³ Incl. 5% tolerance, weight may vary due to different configurations Engine fuel: distillate according to ISO 8217 DMA and DMZ


Tier III with SCR

Bore: 280 mm, Stroke: 320 mm

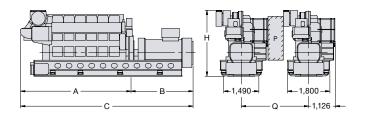
Speed	r/min	r/min 750			720
Frequency	Hz		50		60
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾
5L28/32H		1,100	1,045	1,050	1,000
6L28/32H		1,320	1,255	1,260	1,200
7L28/32H		1,540	1,465	1,470	1,400
8L28/32H		1,760	1,670	1,680	1,600
9L28/32H		1,980	1,880	1,890	1,800

Cyl. no.		5	6	7	8	9
A	mm	4,279	4,759	5,499	5,979	6,199
В	mm	2,400	2,510	2,680	2,770	2,690
С	mm	6,679	7,269	8,179	8,749	8,889
Н	mm	3,184	3,184	3,374	3,374	3,534
Dry mass	t	32.6	36.3	39.4	40.7	47.1

¹⁾ Based on nominal generator efficiencies of 95%

- P $\,$ Free passage between the engines, width 600 mm and height 2,000 mm
- Q Minimum distance between centre of engines: ~2,655 mm (without gallery) ~2,850 mm (with gallery)

MAN L28/32DF


Tier II Tier III

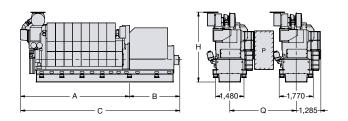
Bore: 280 mm, Stroke: 320 mm

Speed	r/min		750		720
Frequency	Hz		50		60
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾
5L28/32DF		1,000	950	1,000	950
6L28/32DF		1,200	1,140	1,200	1,140
7L28/32DF		1,400	1,330	1,400	1,330
8L28/32DF		1,600	1,520	1,600	1,520
9L28/32DF		1.800	1,710	1.800	1.710

Cyl. no.		5	6	7	8	9
A	mm	4,321	4,801	5,281	5,761	6,241
В	mm	2,400	2,510	2,680	2,770	2,690
С	mm	6,721	7,311	7,961	8,531	8,931
Н	mm	2,835	3,009	3,009	3,009	3,009
Dry mass	t	32.6	36.3	39.4	40.7	47.1

¹⁾ Based on nominal generator efficiencies of 95% Gas methane number ≥ 80

- P Free passage between the engines, width 600 mm and height 2,000 mm
- Q Minimum distance between centre of engines: ~2,655 mm (without gallery) ~2,850 mm (with gallery)


Tier III with SCF

Bore: 270 mm, Stroke: 380 mm

Speed	r/min		750/720	750/720	(MDO1)/MGO)
Frequency	Hz		50/60		50/60
		Eng. kW	Gen. kW ²⁾	Eng. kW	Gen. kW ²⁾
5L27/38		1,600/1,500	1,535/ 1,440	-	-
6L27/38		1,980	1,900	2,100	2,015
7L27/38		2,310	2,220	2,450	2,355
8L27/38		2,640	2,535	2,800	2,690
9L27/38		2,970	2,850	3,150	3,025

Cyl. no.		5	6	7	8	9
A	mm	4,346	4,791	5,236	5,681	6,126
В	mm	2,486	2,766	2,766	2,986	2,986
С	mm	6,832	7,557	8,002	8,667	9,112
Н	mm	3,712	3,712	3,899	3,899	3,899
Dry mass	t	40.0	44.5	50.4	58.2	64.7

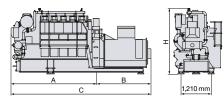
¹⁾ MDO viscosity must not exceed 6 mm²/s = cSt @ 40 °C

- P Free passage between the engines, width 600 mm and height 2,000 mm
- Q Minimum distance between centre of engines: ~2,900 mm (without gallery) ~3,100 mm (with gallery).

²⁾ Based on nominal generator efficiencies of 96%

MAN L23/30H Mk 3

Speed r/min			750 720			900	
Frequency	Hz		50		60		60
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾
5L23/30H Mk	3 ECR			500	475		
5L23/30H Mk	3	885	840	850	810	_	
6L23/30H Mk	3	1,062	1,010	1,020	970	1,200	1,140
7L23/30H Mk	3	1,239	1,180	1,190	1,130	1,400	1,330
8L23/30H Mk	3	1,416	1,345	1,360	1,290	1,600	1,520
9L23/30H Mk	3	1,593	1,515	1,530	1,455	1,800	1,710


Dimensions (5-7 cylinder)

Cyl. no.		5	5	6	6	7	7
	r/min	720 ECR	720/750	720/750	900	720/750	900
A	mm	3,379	3,379	3,749	3,749	4,119	4,276
В	mm	2,202	2,202	2,252	2,252	2,302	2,302
С	mm	5,581	5,581	6,001	6,001	6,421	6,578
Н	mm	2,621	2,621	2,621	2,621	2,621	2,621
Dry mass	t	16.8	16.8	18.4	18.6	20.7	20.7

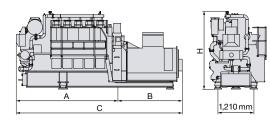
Dimensions (8-9 cylinder)

Cyl. no.		8	8	9	9
	r/min	720/750	900	720/750	900
A	mm	4,489	4,896	4,859	5,266
В	mm	2,352	2,352	2,402	2,402
С	mm	6,841	7,248	7,261	7,668
Н	mm	2,621	2,621	2,621	2,621
Dry mass	t	22.5	22.6	24.5	24.5

¹⁾ Based on nominal generator efficiencies of 95%

Free passage between the engines, width 600 mm and height 2,000 mm Minimum distance between centre of engines: ~2,250 mm (without gallery) ~2,600 mm (with gallery)

Tier III with SCR


Bore: 225 mm, Stroke: 300 mm

Speed	r/min		750		720		900	
Frequency	Hz		50		60		60	
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾	
5L23/30H MI	2 ECR	525	500	525	500	-	-	
5L23/30H MI	(2	675/740	640/705	650/710	620/675	-	_	
6L23/30H MI	(2	888	845	852	810	1,050	1,000	
7L23/30H MI	(2	1,036	985	994	945	1,225	1,165	
8L23/30H MI	(2	1,184	1,125	1,136	1,080	1,400	1,330	

Dimensions

Cyl. no.		5	6	6	7	7	8	8
	r/min	720/750	720/750	900	720/750	900	720/750	900
A	mm	3,379	3,749	3,749	4,119	4,276	4,489	4,896
В	mm	2,202	2,252	2,252	2,302	2,302	2,352	2,352
C	mm	5,581	6,001	6,001	6,421	6,578	6,841	7,248
Н	mm	2,621	2,621	2,621	2,621	2,621	2,621	2,621
Dry mass	t	16.8	18.4	18.6	20.7	20.7	22.5	22.6

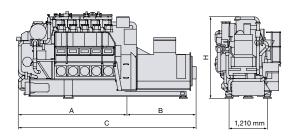
¹⁾ Based on nominal generator efficiencies of 95% Note: Part load optimised – approved and available

Free passage between the engines, width 600 mm and height 2,000 mm Minimum distance between centre of engines: ~2,250 mm (without gallery) ~2,600 mm (with gallery)

Bore: 225 mm, Stroke: 300 mm

Speed	r/min		750		720		900	
Frequency	Hz		50		60		60	
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾	
5L23/30DF		625	590	625	590			
6L23/30DF		750	710	750	710	900	855	
7L23/30DF		875	830	875	830	1,050	995	
8L23/30DF		1,000	950	1,000	950	1,200	1,140	

Dimensions


Cyl. no.		5	6	6	7	7	8	8
	r/min	720/750	720/750	900	720/750	900	720/750	900
A	mm	3,469	3,839	3,839	4,209	4,276	4,579	4,896
В	mm	2,202	2,252	2,252	2,302	2,302	2,352	2,352
С	mm	5,671	6,091	6,091	6,511	6,578	6,931	7,241
Н	mm	2,749	2,749	2,749	2,749	2,749	2,749	2,749
Dry mass	t	17.3	19.0	19.2	21.4	21.4	23.3	23.4

¹⁾ Based on nominal generator efficiencies of 95%.

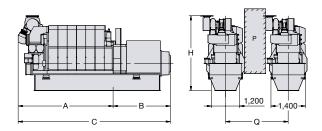
Engine variants with 750 and 720 r/min are certified for compliance with IMO Tier III in the load range 20-100%.

Engine variants with 900 r/min have not been tested, and an SCR catalyst may be required to achieve compliance with IMO Tier III.

Gas methane number ≥ 80.

Free passage between the engines, width 600 mm and height 2,000 mm Minimum distance between centre of engines: ~2,250 mm (without gallery) ~2,600 mm (with gallery)

Tier III with SCF


Bore: 210 mm, Stroke: 310 mm

Speed	r/min		1,000		900
Frequency	Hz		50		60
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾
5L21/31		1,000	950	1,000	950
6L21/31		1,320	1,255	1,320	1,255
7L21/31		1,540	1,465	1,540	1,465
8L21/31		1,760	1,675	1,760	1,675
9L21/31		1,980	1,880	1,980	1,880

Dimensions

Cyl. no.		5	6	7	8	9
A	mm	3,959	4,314	4,669	5,572	5,927
В	mm	1,870	2,000	1,970	2,110	2,135
С	mm	5,829	6,314	6,639	7,682	8,062
Н	mm	3,183	3,183	3,289	3,289	3,289
Dry mass	t	22.5	26.0	29.5	33.0	36.5
4)						

¹⁾ Based on nominal generator efficiencies of 95% Note: Part load optimised – approved and available

- P Free passage between the engines, width 600 mm and height 2,000 mm
- Q Minimum distance between centre of engines: ~2,400 mm (without gallery) ~2,600 mm (with gallery).

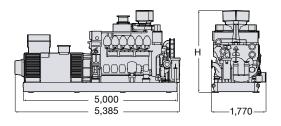
Tier III with SCR

Bore: 175 mm, Stroke: 215 mm

					SFOC at	SFOC at
					100% MCR	75% MCR
					Tier II/Tier III	Tier II/Tier III
Engine model	Rating def.	kWm	kWe ¹⁾	rpm (freq.)	g/kWh	g/kWh
12V175D-MEM	Diesel-electric	1,440	1,382	1,500 (50 Hz)	188/191	194/197
	medium duty	1,800	1,728	1,800 (60 Hz)	195/198	203/206
12V175D-MEL	Diesel-electric	1,620	1,555	1,500 (50 Hz)	188/191	193/196
	light duty	1,920	1,843	1,800 (60 Hz)	195/198	201/205
12V175D-MA	Auxiliary duty	1,620	1,555	1,500 (50 Hz)	188/191	193/196
		1,920	1,843	1,800 (60 Hz)	195/198	201/205

^{1) 3-}phase, 0.8 p.f., assumes alternator efficiency of 96.0%.

SFOC figures related to mechanical output and for distillates according to ISO 8217 DMA, with attached lube oil, HT and LT-cooling water pumps.


Rating definitions:

Marine electric propulsion medium duty	Average load: up to 75%
Marine electric propulsion light duty	Average load: up to 50%
Marine auxiliary	Average load: up to 50%

Dimensions

Н	mm	2,670
Dry weight	t	15.8

GenSet dimensions and weight shown are for guidance only. Details may vary due to different configurations.

S.E.M.T. Pielstick PA6 B STC

Tier II Tier III

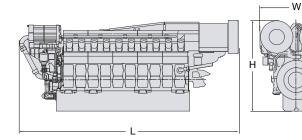
Tier III with SCR

D	000	Chualian	220	
Rore.	280 mm	Stroke	:3:3(1)	mm

Speed	r/min	1,050
mep	bar	22.8
		kW¹)
12PA6 B S1	C	4,860
16PA6 B S1	·c	6,480
20PA6 B S	·c	8,100

Specific Fuel Oil Consumption (SFOC) to ISO conditions

MCR	100%	85%
PA6 B STC	_2)	_2)


Dimensions

Cyl. No.		12	16	20
L	mm	5,830	6,780	7,960
W	mm	2,340	2,340	2,640
Н	mm	3,124	3,124	3,166
Dry mass	t	31	37	43
	D 400 4 D	1 100 0017 DAAA		

Engine fuel: distillate according to ISO 8217 DMA

Engine rating: engine rating according to ISO 3046 conditions

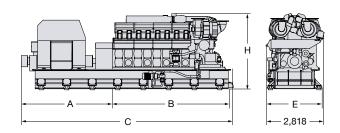
²⁾ SFOC values are project specific. Please contact MAN Energy Solutions for further information.

¹⁾ 110% load for one in six operating hours on navy vessels, with approval according to HSVR from DNV, available on special request

Tier III with SCR

GenSet for electric propulsion.

Bore 280 mm, Stroke 330 mm


Speed	r/min		1,000				
Frequency	Hz		50	6			
		Eng. kW	Gen. kW ¹⁾	Eng. kW	Gen. kW ¹⁾		
12PA6 B		4,440	4,307	4,200	4,074		
16PA6 B		5,920	5,742	5,600	5,432		
18PA6 B		6,660	6,460	6,300	6,111		
20PA6 B		7,400	7,178	7,000	6,790		

Dimensions²⁾

Cyl. No.		12	16	18	20
A	mm	4,370	4,727	4,732	4,770
В	mm	4,600	5,637	6,097	6,557
С	mm	9,287	10,583	11,048	11,547
Н	mm	3,695	3,695	3,695	3,695
E	mm	2,670	2,670	2,670	2,670
Dry mass ³⁾	t	60	72	80	85
1)					

¹⁾ Nominal generator efficiencies: 97%

Engine fuel: distillate according to ISO 8217 DMA and DMZ Permissible overload of 10% for 1 hour every other 12 hours of operation

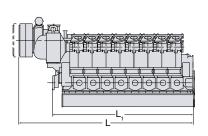
²⁾ Dimensions are based on operation under inclination up to 25 degrees in any direction

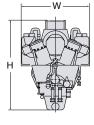
³⁾ Incl. 5% tolerance, weight may vary due to different configurations

S.E.M.T. Pielstick PC2.6 B

Bore: 400	mm	Stro	ko.	500	mm

Speed	r/min	600
mep	bar	23.9
		kW
12PC2.6 B		9,000
14PC2.6 B		10,500
16PC2.6 B		12,000


Specific Fuel Oil Consumption (SFOC) to ISO conditions


MCR	100%	85%
PC2.6 B	_1)	_1)

Dimensions

Cyl. No.		12	14	16
L	mm	9,100	9,840	10,580
L ₁	mm	5,960	6,700	7,440
w	mm	3,780	3,780	3,780
Н	mm	4,800	4,800	4,800
Dry mass	t	94	104	114
1)				

¹⁾ SFOC values are project specific. Please contact MAN Energy Solutions for further information.

Four-stroke propulsion systems

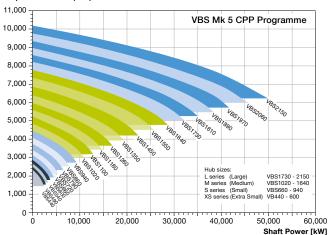
MAN Alpha

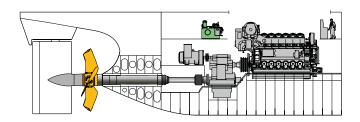
Propeller programme - FPP and CPP

The MAN Alpha FPP portfolio covers:

- power range of 4-40 MW per shaft
- blade configurations for 3, 4, 5 and 6-bladed propellers
- propellers with integrated shaft line and stern tube solutions
- a wide range of stern tube lube and sealing systems
 - oil, water, biodegradable oils

The MAN Alpha FPPs are characterised by the following benefits:

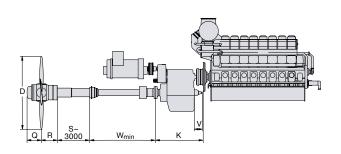

- High-efficient hydrodynamically optimised blade profiles
 - Kappel designs available
- High reliability: robust approach with ample mechanical design margins
- High-efficient aft ship integration with rudder, rudder bulb, ducts, etc.
- Layouts for complete propulsion systems
- Plant calculations with upfront consideration to torsional vibration calculation (TVC), alignment and control systems


MAN Alpha controllable pitch propeller

- As standard Mk 5 versions are 4-bladed optionally 3- and 5-bladed propellers are available on request
- The figures stated after VBS indicate the propeller hub diameter
- Standard blade/hub materials are Ni-Al-bronze, stainless steel is optional
- The propellers are available up to the highest ice classes. However the standard programme, is based on 'no ice'

Standard programme

Propeller diameter (mm)

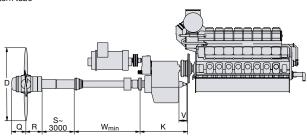

Four-stroke propulsion system installation – complete powertrain with propeller and aft ship equipment MAN Alpha Kappel propeller – four-bladed CP with fairing cone for rudder bulb

Cyl.	kW	Prop. speed r/min	D mm	Hub VBS mm	Q mm	R mm	Wmin mm	K mm	V mm	Prop. mass t ¹⁾
L51/6	60DF									
6	6,900	162	4,400	1,100	851	920				
6	6,900	133	5,000	1,180	914	989				
6	6,900	103	5,850	1,350	1,037	1,096				
7	8,050	160	4,550	1,180	914	989				
7	8,050	133	5,150	1,260	975	1,036				
7	8,050	104	6,000	1,450	1,114	1,148				
8	9,200	157	4,700	1,180	914	989				
8	9,200	132	5,300	1,350	1,037	1,096				
8	9,200	103	6,200	1,450	1,114	1,148				
9	10,350	155	4,850	1,260	975	1,036				
9	10,350	131	5,450	1,350	1,037	1,096				
9	10,350	102	6,400	1,550	1,175	1,213				
V48/6	60CR									
12	14,400	160	4,950	1,350	1,037	1,096	1,800	2,620		26.7
12	14,400	130	5,600	1,450	1,114	1,163	1,850	2,770		33.2
12	14,400	100	6,600	1,640	1,260	1,256	1,900	3,140		42.2
14	16,800	160	5,100	1,450	1,114	1,163	1,850	2,775		31.7
14	16,800	130	5,850	1,550	1,187	1,208	1,900	2,905		38.1
14	16,800	100	6,850	1,730	1,330	1,307	1,950	3,355		48.5
16	19,200	160	5,260	1,450	1,114	1,163	1,850	2,805		32.9
16	19,200	130	6,050	1,640	1,260	1,256	1,950	3,155		43.9
16	19,200	100	7,100	1,730	1,330	1,367	2,000	3,455		56.3
18	21,600	160	5,400	1,550	1,187	1,213	1,900	2,905		37.3
18	21,600	130	6,200	1,640	1,260	1,266	1,950	3,155		45.5
18	21,600	100	7,300	1,810	1,390	1,420	2,000	3,655		61.4

¹⁾ S_{min} and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube

Cyl.	kW	Prop. speed r/min	D mm	Hub VBS mm	Q mm	R mm	Wmin mm	K mm	V mm	Prop. mass t ¹⁾
L48/6	60CR									
6	7,200	172	4,250	1,100	851	970	1,700			19.1
6	7,200	143	4,800	1,180	914	989	1,700			23.0
6	7,200	112	5,600	1,350	1,037	1,096	1,700			29.9
7	8,400	169	4,400	1,100	851	995	1,700			21.4
7	8,400	141	5,000	1,260	975	1,036	1,700			26.4
7	8,400	110	5,850	1,350	1,037	1,096	1,750			32.3
8	9,600	166	4,550	1,180	914	989	1,700			24.2
8	9,600	139	5,150	1,260	975	1,036	1,700			28.2
8	9,600	110	6,000	1,450	1,114	1,148	1,800			37.9
9	10,800	163	4,700	1,260	975	1,036	1,700			27.2
9	10,800	137	5,300	1,350	1,037	1,096	1,800			33.2
9	10,800	108	6,200	1,450	1,114	1,163	1,800			40.2
41										

 $^{^{1)}}$ $\rm S_{min}$ and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube

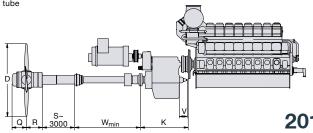


Cyl.	kW	Prop. speed r/min	D mm	Hub VBS mm	Q mm	R mm	Wmin mm	K mm	V mm	Prop. mass t 1)
V48/6	60B									
12	13,800	162	4,950	1,350	1,027	1,100	1,800		876	31.5
12	13,800	135	5,600	1,450	1,122	1,197	1,900		876	39.0
12	13,800	106	6,600	1,640	1,260	1,256	1,900		876	51.2
14	16,100	163	5,100	1,450	1,122	1,197	1,800		876	36.6
14	16,100	131	5,850	1,550	1,175	1,225	1,900		876	45.4
14	16,100	99	6,850	1,730	1,330	1,339	1,950		TBS	55.8
16	18,400	162	5,250	1,450	1,122	1,197	1,900		876	39.2
16	18,400	129	6,050	1,550	1,175	1,225	1,950		876	50.0
16	18,400	97	7,100	1,810	1,390	1,300	2,000		TBS	61.0
18	20,700	161	5,400	1,550	1,175	1,225	1,900		876	44.7
18	20,700	128	6,200	1,640	1,260	1,256	1,950		876	54.7
18	20,700	96	7,300	1,890	1,450	1,370	2,000		TBS	63.3
L48/6	60B									
6	6,900	170	4,250	1,100	851	920	1,700		_739	18.5
6	6,900	142	4,800	1,180	914	1,004	1,700		739	22.5
6	6,900	111	5,600	1,350	1,027	1,096	1,700		876	28.9
7	8,050	167	4,400	1,100	851	945	1,700		739	20.7
7	8,050	139	5,000	1,260	972	1,036	1,700		739	25.7
7	8,050	109	5,850	1,350	1,027	1,035	1,750		876	31.6
8	9,200	165	4,550	1,180	914	1,004	1,700		739	23.2
8	9,200	138	5,150	1,260	972	1,036	1,700		739	27.2
8	9,200	109	6,000	1,450	1,122	1,197	1,800		876	36.6
9	10,350	162	4,700	1,260	972	1,036	_1,700		739	25.9
9	10,350	136	5,300	1,350	1,027	1,096	1,750		876	31.0
9	10,350	107	6,200	1,450	1,122	1,163	1,800		876	39.1

 $^{^{1)}\,}$ S_{min} and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube

Cyl.	kW	Prop. speed r/min	D mm	Hub VBS mm	Q mm	R mm	Wmin mm	K mm	V mm	Prop. mass t 1)
	60CR	1/111111			111111					
12	15,600	161	5,100	1,450	1,122	1,197	1,800			
12	15,600	133	5,750	1,550	1.175	1,236	1,900			
12	15,600	106	6,750	1,640	1,260	1,288				
							1,950			
14	18,200	164	5,200	1,450	1,122	1,227	1,800			
14	18,200	131	5,950	1,550	1,175	1,256	1,900			
14	18,200	104	7,000	1,730	1,330	1,339	3,000			
L35/4										
6	3,180	208	3,300	790	_ 600	692	1,400			6.4
6	3,180	167	3,800	940	714	886	1,530			8.7
6	3,180	130	4,400	1,020	775	896	1,530			10.9
7	3,710	198	3,500	860	653	750	1,530			7.9
7	3,710	161	4,000	940	714	886	1,530			9.5
7	3,710	128	4,600	1,100	836	1,001	1,560			12.7
8	4,240	197	3,600	860	653	750	1,530			8.4
8	4,240	165	4,050	940	714	886	1,530			10.0
8	4,240	127	4,750	1,100	836	1,001	1,560			13.6
9	4,770	202	3,600	940	714	886	1,530			9.3
9	4,770	167	4,100	1,020	775	896	1,560			11.9
9	4,770	130	4,800	1,100	836	1,001	1,630			14.7
10	5,300	199	3,700	940	714	886	1,560			10.2
10	5,300	166	4,200	1,020	775	896	1,560			12.5
10	5 300	126	5 000	1 180	897	1 004	1 630			16.8

 $^{^{1)}}$ S_{min} and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube



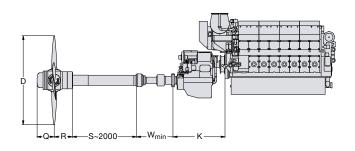
Cyl.	kW	Prop. speed r/min	D mm	Hub VBS mm	Q mm	R mm	Wmin mm	K mm	V mm	Prop. mass t 1)
V32/4		1/111111			111111			111111		
12	7,200	207	3,800	1,020	795	879	1,650			14.4
12	7,200	167	4,400	1,100	851	920	1,700			17.4
12	7,200	128	5,250	1,260	975	1,036	1,700			22.9
14	8,120	202	3,950	1,020	795	879	1,650			15.2
14	8,120	164	4,550	1,180	914	989	1,700			19.7
14	8,120	127	5,400	1,260	975	1,036	1,700			24.4
16	9,600	205	4,050	1,100	851	945	1,700			18.1
16	9,600	165	4,650	1,180	914	989	1,700			21.8
16	9,600	127	5,550	1,350	1,037	1,096	1,750			28.2
18	10,800	205	4,150	1,180	914	989	1,700			20.2
18	10,800	164	4,750	1,260	975	1,036	1,700			24.2
18	10,800	126	5,700	1,450	1,114	1,148	1,800			32.7
20	12,000	204	4,250	1,180	914	989	1,700			21.2
20	12,000	163	4,850	1,260	975	1,036	1,750			25.8
20	12,000	124	5,850	1,450	1,114	1,163	1,800			34.7
L32/4										
6	3,600	206	3,350	860	653	750	1,400			8.9
6	3,600	170	3,800	940	714	886	1,520			10.4
6	3,600	130	4,450	1,020	775	896	1,520			12.4
7	4,060	202	3,500	860	653	750	1,520			9.7
7	4,060	168	3,950	940	714	886	1,520			11.2
7	4,060	131	4,600	1,100	836	1,001	1,550			14.3
8	4,800	199	3,600	940	714	886	1,520			10.9
8	4,800	167	4,050	1,020	775	896	1,520			12.5
8	4,800	129	4,750	1,100	836	1,001	1,630			16.2
9	5,400	200	3,650	940	714	886	1,520			11.3
9	5,400	166	4,150	1,020	775	896	1,550			13.6
9	5,400	128	4,900	1,180	897	1,004	1,630			17.9
10	6,000	201	3,700	940	714	886	1,550			12.3
10	6,000	164	4,250	1,020	775	896	1,630			15.1
10	6,000	128	5,000	1,180	897	1,004	1,650			18.9

 $^{^{\}rm 1)}$ $\rm S_{\rm min}$ and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube

Cyl.	kW	Prop. speed r/min	D mm	Hub VBS mm	Q mm	R mm	Wmin mm	K mm	V mm	Prop. mass t 1)
V32/4	0									
12	6,000	187	3,950	1,020	775	896	1,560			15.2
12	6,000	159	4,400	1,100	836	970	1,630			18.3
12	6,000	128	5,050	1,180	914	989	1,700			22.6
14	7,000	183	4,100	1,020	775	901	1,630			17.1
14	7,000	158	4,550	1,100	836	970	1,650			19.8
14	7,000	127	5,250	1,260	975	1,036	1,700			26.1
16	8,000	183	4,200	1,100	836	970	1,650			19.3
16	8,000	155	4,700	1,180	914	989	1,700			23.6
16	8,000	126	5,400	1,260	975	1,036	1,700			27.8
18	9,000	181	4,300	1,100	836	995	1,700			21.0
18	9,000	153	4,850	1,260	975	1,036	1,700			26.2
18	9,000	123	5,600	1,350	1,037	1,096	1,740			31.6
L32/4	0									
6	3,000	205	3,300	790	639	692	1,400			8.8
6	3,000	171	3,700	860	653	745	1,400			9.9
6	3,000	137	4,200	940	714	886	1,520			12.0
7	3,500	199	3,450	860	653	745	1,400			9.8
7	3,500	168	3,850	940	714	886	1,520			11.8
7	3,500	134	4,400	1,020	775	896	1,520			13.9
8	4,000	198	3,550	860	653	745	1,400			10.3
8	4,000	165	4,000	940	714	906	1,520			12.5
8	4,000	133	4,550	1,100	836	1,001	1,560			16.3
9	4,500	195	3,650	940	_714	906	1,520			12.2
9	4,500	164	4,100	1,020	_775	896	1,520			14.1
9	4,500	134	4,650	1,100	_836	1,006	1,560			17.1

 $^{\rm 1)}$ S $_{\rm min}$ and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube

Cyl.	kW	Prop. speed r/min	D mm	Hub VBS mm	Q mm	R mm	Wmin mm	K mm	V mm	Prop. mass t 1)
V28/3	3D STC									
12	6,000	187	3,700	940	735	828	1,600			10.9
12	6,000	155	4,000	1,020	795	879	1,650			13.1
12	6,000	140	4,300	1,100	851	920	1,650			14.5
16	8,000	211	3,700	1,020	795	879	1,650			13.1
16	8,000	184	4,000	1,100	851	920	1,650			14.7
16	8,000	159	4,300	1,100	851	945	1,700			16.2
20	10,000	228	3,700	1,100	851	920	1,650			14.6
20	10,000	199	4,000	1,100	851	945	1,700			16.3
20	10,000	176	4,300	1,180	914	989	1,700			18.3

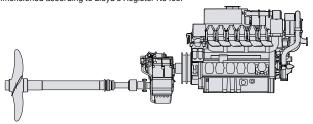

 $^{^{\}rm 1)}$ $\rm S_{\rm min}$ and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube

tub	C							
L27/3	88							
6	2,040	258	2,650	660	501	631	1,320	4.9
6	2,040	218	2,950	720	547	650	1,350	5.7
6	2,040	191	3,200	790	639	692	1,350	6.6
6	2,040	163	3,500	790	639	692	1,350	7.0
6	2,040	152	3,650	860	653	745	1,350	7.8
7	2,380	247	2,800	720	547	513	1,350	5.7
7	2,380	211	3,100	720	547	513	1,350	6.1
7	2,380	186	3,350	790	639	692	1,350	7.0
7	2,380	161	3,650	860	653	745	1,400	8.1
7	2,380	150	3,800	860	653	745	1,400	8.4
8	2,720	242	2,900	720	547	513	1,350	6.1
8	2,720	209	3,200	790	639	692	1,350	6.9
8	2,720	186	3,450	790	639	692	1,400	7.5
8	2,720	173	3,600	860	653	745	1,400	8.3
8	2,720	147	3,950	940	714	886	1,400	9.7
9	3,060	243	2,950	720	547	513	1,350	6.3
9	3,060	206	3,300	790	639	692	1,400	7.5
9	3,060	184	3,550	860	653	745	1,400	8.5
9	3,060	172	3,700	860	653	745	1,400	8.7
9	3,060	147	4,050	940	714	886	1,530	10.5

 $^{^{11}}$ S_{min} and propeller mass are based on 4,000 mm propeller shaft and 2,000 mm stern tube for 21,31, 27/38 and 6,000 mm propeller shaft and 3,000 mm stem tube for the other types

		Prop.	D	Hub VBS	Q	R	Wmin	к	v	Prop.
Cyl.		r/min	mm	mm	mm	mm	mm	mm	mm	t 1)
L21/31										
6	1,290	274	2,350	600	456	566	1,320			3.8
6	1,290	232	2,600	600	456	566	1,320			4.1
6	1,290	205	2,800	660	501	631	1,320			4.4
6	1,290	181	3,000	660	501	631	1,320			4.7
7	1,505	260	2,500	600	456	566	1,320			4.1
7	1,505	223	2,750	660	501	631	1,320			4.6
7	1,505	198	2,950	660	501	631	1,320			4.8
7	1,505	176	3,150	720	547	650	1,320			5.4
8	1,720	261	2,550	600	456	581	1,320			4.4
8	1,720	219	2,850	660	501	631	1,320			4.8
8	1,720	196	3,050	720	547	650	1,320			5.1
8	1,720	176	3,250	720	547	650	1,350			5.6
9	1,935	262	2,600	660	501	631	1,320			4.7
9	1,935	221	2,900	720	547	650	1,320			5.4
9	1,935	199	3,100	720	547	650	1,350			5.9
9	1,935	188	3,200	720	547	650	1,350			6.0

 $^{^{1)}}$ S $_{\rm min}$ and propeller mass are based on 4,000 mm propeller shaft and 2,000 mm stern tube for 21/31, 27/38 and 6,000 mm propeller shaft and 3,000 mm stem tube for the other types

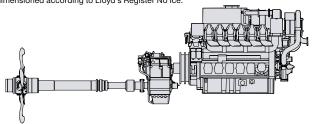


MAN Alpha FPP solutions for MAN 175D

Engine power	Engine speed				Shaft diameter	Design speed
kW	r/min	r/min	mm	type	mm	knots
1,740	1,800	884	1,300	FPP	175	25
1,740	1,800	702	1,400	FPP	175	25
1,740	1,800	620	1,450	FPP	175	25
1,740	1,800	523	1,600	FPP	175	25
1,740	1,800	450	1,750	FPP	175	20
1,740	1,800	400	1,850	FPP	205	20
1,740	1,800	360	2,000	FPP	205	20
1,740	1,800	331	2,100	FPP	205	20
1,740	1,800	302	2,250	FPP	205	15
1,740	1,800	288	2,300	FPP	205	15
1,740	1,800	261	2,450	FPP	225	15
1,740	1,800	247	2,500	FPP	225	15
2,220	1,900	741	1,300	FPP	175	25
2,220	1,900	654	1,450	FPP	175	25
2,220	1,900	552	1,550	FPP	205	25
2,220	1,900	475	1,750	FPP	205	20
2,220	1,900	422	1,850	FPP	205	20
2,220	1,900	380	2,000	FPP	205	20
2,220	1,900	350	2,100	FPP	205	20
2,220	1,900	319	2,200	FPP	225	15
2,220	1,900	304	2,250	FPP	225	15
2,220	1,900	275	2,500	FPP	225	15
	New Power New Power New Power New Power	power speed kW r/min 1,740 1,800 1,740 1,800 1,740 1,800 1,740 1,800 1,740 1,800 1,740 1,800 1,740 1,800 1,740 1,800 1,740 1,800 1,740 1,800 1,740 1,800 1,740 1,800 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900 2,220 1,900	power speed speed kW r/min r/min 1,740 1,800 884 1,740 1,800 702 1,740 1,800 523 1,740 1,800 450 1,740 1,800 400 1,740 1,800 360 1,740 1,800 302 1,740 1,800 288 1,740 1,800 288 1,740 1,800 247 2,220 1,900 741 2,220 1,900 552 2,220 1,900 475 2,220 1,900 350 2,220 1,900 350 2,220 1,900 350 2,220 1,900 350 2,220 1,900 350 2,220 1,900 350 2,220 1,900 30 2,220 1,900 30 2,220 1,900	power speed speed diameter kW r/min r/min mm 1,740 1,800 884 1,300 1,740 1,800 620 1,450 1,740 1,800 523 1,600 1,740 1,800 450 1,750 1,740 1,800 400 1,850 1,740 1,800 360 2,000 1,740 1,800 331 2,100 1,740 1,800 302 2,250 1,740 1,800 288 2,300 1,740 1,800 261 2,450 1,740 1,800 247 2,500 2,220 1,900 741 1,300 2,220 1,900 654 1,450 2,220 1,900 552 1,550 2,220 1,900 475 1,750 2,220 1,900 422 1,850 2,220 1,900 380 2,000	power speed speed image diameter 4-bladed kW r/min r/min mm type 1,740 1,800 884 1,300 FPP 1,740 1,800 620 1,450 FPP 1,740 1,800 620 1,450 FPP 1,740 1,800 523 1,600 FPP 1,740 1,800 450 1,750 FPP 1,740 1,800 360 2,000 FPP 1,740 1,800 360 2,000 FPP 1,740 1,800 331 2,100 FPP 1,740 1,800 302 2,250 FPP 1,740 1,800 288 2,300 FPP 1,740 1,800 261 2,450 FPP 1,740 1,800 247 2,500 FPP 2,220 1,900 741 1,300 FPP 2,220 1,900 552	power speed speed diameter 4-bladed diameter kW r/min r/min mm type mm 1,740 1,800 884 1,300 FPP 175 1,740 1,800 702 1,400 FPP 175 1,740 1,800 620 1,450 FPP 175 1,740 1,800 523 1,600 FPP 175 1,740 1,800 450 1,750 FPP 175 1,740 1,800 360 2,000 FPP 205 1,740 1,800 360 2,000 FPP 205 1,740 1,800 302 2,250 FPP 205 1,740 1,800 302 2,250 FPP 205 1,740 1,800 288 2,300 FPP 225 1,740 1,800 261 2,450 FPP 225 1,740 1,800 247

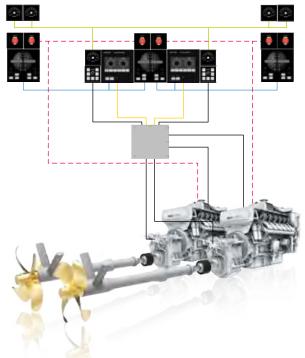
¹⁾ Engine rating designations: MH = Marine 'Heavy Duty' and MM = Marine 'Medium Duty'

Propellers for the MAN 12V175D engines are optimized for a diesel-mechanical twin screw vessel operating at 85% engine rating. The standard propeller programme is dimensioned according to Lloyd's Register No Ice.



MAN Alpha CPP solutions for MAN 175D

Engine rating ¹⁾	Engine power	Engine speed	Propeller speed		Propeller hub diam.	Shaft diameter	Design speed
12V175D	kW	r/min	r/min	mm	mm	mm	knots
МН	1,740	1,800	884	1,250	440	175	25
МН	1,740	1,800	702	1,350	440	175	25
МН	1,740	1,800	620	1,450	440	175	25
МН	1,740	1,800	523	1,600	490	175	25
МН	1,740	1,800	450	1,750	490	175	20
МН	1,740	1,800	400	1,850	490	205	20
МН	1,740	1,800	360	2,000	540	205	20
МН	1,740	1,800	331	2,100	540	205	20
МН	1,740	1,800	302	2,200	540	205	15
МН	1,740	1,800	288	2,300	600	205	15
МН	1,740	1,800	261	2,450	600	225	15
мн	1,740	1,800	247	2,500	600	225	15
MM	2,220	1,900	741	1,350	440	175	25
MM	2,220	1,900	654	1,450	440	175	25
ММ	2,220	1,900	552	1,550	490	205	25
MM	2,220	1,900	475	1,750	490	205	20
ММ	2,220	1,900	422	1,850	540	205	20
ММ	2,220	1,900	380	2,000	540	205	20
ММ	2,220	1,900	350	2,100	600	205	20
ММ	2,220	1,900	319	2,250	600	225	15
ММ	2,220	1,900	304	2,300	600	225	15
ММ	2,220	1,900	275	2,500	660	225	15


¹⁾ Engine rating designations: MH = Marine 'Heavy Duty' and MM = Marine 'Medium Duty'

Propellers for the MAN 12V175D engines are optimized for a diesel-mechanical twin screw vessel operating at 85% engine rating. The standard propeller programme is dimensioned according to Lloyd's Register No Ice.

Alphatronic 3000 propulsion control system

A high number of various FPP and CPP propulsion package applications are controlled by the Alphatronic 3000 system – customised for combinations of MAN medium and high speed engines in a wide range of diesel-mechanical, hybrid or electric propulsion setups.

Simple system architecture for a straightforward twin MAN 175D FPP plant

Alphatronic 3000 at your finger tips: Safe and accurate propulsion control all the way – from the navigator's finger tips to the propeller tips. Any manoeuvring order given is translated into electrical speed setting-, pitch- or clutch signals, governing the hydraulic servo circuits of the gearbox and propeller system. Swift and reliable vessel manoeuvres are ensured due to quick and stable system response.

MAN turbochargers and exhaust gas systems

MAN Energy Solutions has a long and successful track record in the development of exhaust gas turbochargers for low, medium and high-speed diesel and gas engines. Drawing on its unrivalled expertise in the design and manufacture of this crucial engine component. MAN Energy Solutions can offer you world-leading technology that helps you maximise the efficiency of your operations.

MAN turbochargers are designed to deliver peak performance throughout their working lives - in some of the harshest conditions encountered anywhere in the world. This is achieved by combining three elements: simplicity, flexibility and reliability. For example, we develop and build our turbochargers to make installation, operation, servicing and maintenance as easy and efficient as possible. This reduces your initial capital investment and results in lower lifecycle costs.

Applications

- Marine propulsion
- Marine GenSets
- Power generation
- Construction
- Mining
- Off-road vehicles
- Locomotives Industrial
- Offshore
- Mechanical drives

MAN TCT Series

Technical data

Turbine type	Axial flow turbine
Max. permissible temp.	520 °C
Pressure ratio	up to 4.7
Optimised for IMO Tier III	

Supercharged engine output

Туре	kW	Mass kg
TCT30	7,500	1,820
TCT40	9,460	2,500
TCT50	12,000	3,455
TCT60	15,120	4,735
TCT70	19,040	6,480
TCT80	24,030	8,890

Specific air consumption (le) 7.5 kg/kWh

MAN TCA Series

Technical data

Turbine type	Axial flow turbine
Max. permissible temp.	500 °C two-stroke / 650 °C four-stroke
Pressure ratio	up to 5.5
Suitable for HFO, MDO, gas	

Turbocharger programme

		x. supercharged ngine output kW	Max. permissible		
Туре	Two-stroke	Four-stroke	Speed	Mass	
	le* = 7.5 kg/kWh	le* = 6.5 kg/kWh	rpm	kg	
TCA33	-	5,400	27,800	1,370	
TCA44	7,400	7,900	22,500	1,950	
TCA55	10,200	10,400	20,000	3,200	
TCA66	14,600	14,800	16,900	5,300	
TCA77	20,700	21,000	14,200	8,330	
TCA88	32,400	30,000	12,000	14,000	

^{*} Specific air consumption

MAN TCR Series

Technical data

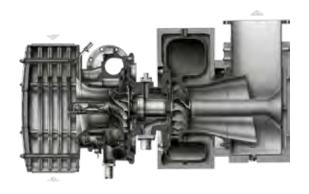
Turbine type	Radial flow turbine
Max. permissible temp.	650 °C
Pressure ratio	up to 5.4
Suitable for HFO, MDO, gas	

Turbocharger programme

		ax. supercharged engine output kW	Max. permissible		
Туре	Two-stroke	Four-stroke	Speed	Mass	
	le* = 7.0 kg/kWh	le* = 6.5 kg/kWh	rpm	kg	
TCR10		600	85,000	50	
TCR12	-	880	70,900	100	
TCR14	-	1,300	58,700	110	
TCR16	-	1,850	48,800	180	
TCR18	2,700	2,750	40,300	300	
TCR20	4,000	4,000	33,400	500	
TCR22	7,000	6,850	25,600	1,050	

^{*} Specific air consumption

MAN NR/S Series


Technical data

Turbine type	Radial flow turbine
Max. permissible temp.	650 °C (opt. 720 °C)
Pressure ratio	up to 4.5
Suitable for HFO, MDO, gas	

Turbocharger programme

	Max. supercharged engine output	Max. permissible speed	Mass
Туре	kW	rpm	kg
NR12/S	670	75,000	155
NR14/S	950	64,000	190
NR17/S	1,350	52,600	260
NR20/S	1,870	44,700	350
NR24/S	2,690	37,300	505
NR29/S	3,820	31,300	780
NR34/S	5,400	26,300	1,450

Specific air consumption le = 7 kg/kWh

MAN FCOCHARGE

Market leader in two-stage turbocharging

MAN ECOCHARGE two-stage turbocharging is suitable for high and medium-speed engines of all fuel types and for application in all engine power ranges. Extremely high efficiencies and pressure ratios enable increased power density and improved key engine parameters. For example, it is possible to use a smaller engine for the same required power output or to achieve lower NO_x emissions and lower specific fuel oil consumptions (SFOC).

As a compact two-stage unit, the MAN ECOCHARGE delivers outstanding turbocharging efficiency. A variety of product types and sizes are available, ensuring the perfect turbocharger-to-engine-fit. MAN ECOCHARGE always consists of a clever combination of high and low-pressure turbochargers. While MAN TCX has been specifically designed for high-pressure applications, MAN TCA and MAN TCR as well as our new MAN TCT generation series round up the package as low-pressure turbochargers.

MAN TCX Series

Technical data

Turbine type	Mixed flow turbine	
Max. permissible temp.	650 °C	
Pressure ratio (two stages)	up to 10.5	
Suitable for HFO, MDO, gas		

TCX turbocharger programme

	Max. engine output*	Max. permissible speed	Mass
Туре	kW	rpm	kg
TCX17	8,500	40,980	470
TCX19	11,900	34,550	785
TCX21	16,900	29,000	1,325
TCX23	23,900	24,390	2,230

^{*} le = 6 kg/kWh; pHPCin = 3 bar; THPCin = 45 °C

MAN FTR

MAN's EGR Blower series - Electrical Turbo Blower (ETB)

Specifically designed for EGR systems the MAN ETB plays an important role in enabling these systems to reach IMO Tier III emission limitation. The EGR blower is a core component of MAN Energy Solutions' high-pressure EGR system that raises the exhaust-gas pressure in order to overcome the pressure difference between exhaust gas and scavenging receiver. In addition the recirculated exhaust gas amount is controlled during the EGR operation by varying the blower speed.

The desired EGR operating conditions are achieved by using a high-speed electric motor, directly coupled to the compressor wheel and speed controlled by a frequency converter. The scope of supply consists of the ETB and one cabinet with frequency converter and sine wave filter.

The MAN ETB features a high-efficient blower wheel, optimized for the low-pressure ratios necessary for the high pressure EGR system of a two-stroke diesel engine with materials designed to withstand corrosive agents caused by Sulphur content fuels. As such MAN's ETB is suitable for high-pressure EGR engines of all fuel types and in all application ranges.

Technical data

Туре	Max. blower speed	Mass of blower
	rpm	kg
ETB40 1)	9,200	1,860
ETB30 ²⁾	14,000	1,200

¹⁾ Available

With ETB30 and ETB40 the MAN two-stroke engine portfolio can be covered with just two frame sizes.

The maximum engine power output with one ETB depends on the EGR volume flow and the pressure difference between exhaust gas and scavenging receiver. Therefore an EGR blower selection tool will be introduced and the output will be available in CEAS soon.

For more information and blower assignment, please contact turbochargers@man-es.com.

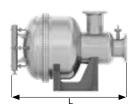
ETB - explicitly designed for EcoEGR

MAN's ETB is explicitly designed for EcoEGR applications where the blower will run continuously in both Tier III and Tier II Eco mode. This results in a compact and cost optimized design with highest availability.

In Tier II Eco mode the EGR volume flow is approx. 50% of the required volume flow in Tier III mode. To cover the operating points of both running modes MAN's ETB features an extremely wide compressor map.

The ETB achieves benchmark efficiencies and therefore the operational costs are minimized.

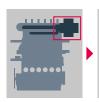
For more information about EcoEGR see the section EcoEGR in the MAN B&W two-stroke propulsion engines chapter.


²⁾ Coming up soon

MAN SCR-HP

Dimensions

Cluster	Reactor diameter	Reactor length < 0.1% sulphur	Reactor length < 3.5% sulphur
	mm	mm	mm
1	1,900	3,500	4,500
2	2,300	3,800	4,800
3	2,800	4,000	5,000
4	3,100	4,200	5,200
5	3,800	4,800	5,800
6	4,500	5,400	6,400



MAN SCR-HP

The MAN SCR-HP is a small and compact NO_x emission reduction system. The most compact design in the market allows for easy integration, and the few frame sizes will cover the entire two-stroke portfolio up to 25 MW per SCR reactor.

The integrated mixing unit reduces the overall length and volume. The specific honeycombs ensure a compact design.

The MAN SCR-HP can be mounted in all positions and is capable of running on all fuels.

Auxiliary components like the urea injection lance, urea dosing unit and urea pump module are from MAN's well-proven SCR-LP system.

SCR-HP system

The service brand of MAN Energy Solutions

Keeping you moving - Expert hands to guide you

MAN Energy Solutions' low-speed and medium-speed engines move 50% of global trade, powering one in every two ships plying the world's trade routes. When it comes to powering energy grids, it responds to world-changing trends, such as growing energy demand and growing populations, with smart, efficient and eco-friendly power grid solutions. Whether your business is stationary or marine focused, MAN PrimeServ tailors its services to meet your needs, ensuring service support for all MAN Energy Solutions products, whether manufactured within the MAN Group or by authorised licensees. Taking care of your two-stroke and four-stroke main engines, your GenSets or turbochargers and propulsion packages – you can be sure of well-serviced, efficient, reliable equipment when you need it most.

Service with passion

MAN Energy Solutions offers a strong after sales service with a clear performance commitment, qualified and reliable experts and tailor-made solutions – all combined in our global service brand MAN PrimeServ. Our approach is simple, yet effective: Premium service performed with passion meeting your needs. We listen and provide optimum flexibility and reliability in the services we offer. Straddling the globe with a network of more than 100 service centres, MAN PrimeServ is fully primed to provide local expertise, wherever you are and whenever you need it.

The right spare parts, when you need them

MAN spare parts are designed and manufactured for you to use precisely in conjunction with MAN equipment. Tried and tested, MAN spare parts are backed by more than 250 years of experience and ongoing research, as well as customer feedback, aimed entirely at increasing the performance of your engines.

For the ultimate peace-of-mind MAN spare parts come with a warranty. The MAN PrimeServ network assures, a reliable supply chain, giving you privileged access to the best parts wherever and whenever you need them, right throughout your equipment's life cycle. MAN PrimeServ is the only class-approved supplier to all MAN-designed engines.

Optimised equipment - Your partners for retrofit solutions

MAN PrimeServ offers advanced retrofit solutions to optimise the reliability, economic efficiency, and environmental sustainability of existing equipment.

Make the most of retrofit solutions that are tailor-made for your specific machinery and concepts involving not only the core machine itself, but also the auxiliary systems, instruments, and controls your equipment requires. By improving efficiency, and thus performance, these solutions ensure savings on fuel oil and lube oil, while enabling flexible operation, increasing time between overhauls, and hence reduce maintenance. Not only can you extend the lifecycle of your engines, but you can also meet new environmental regulations, joining the road to energy transition and decarbonisation.

Competent OEM service when and where you need it

OEM service is the logical step from the very outset when your equipment is installed and commissioned. Highly-skilled MAN PrimeServ engineers ensure quality 24-hour service for your equipment, advising and acting on

all technical matters, with the ultimate goal of guiding you and your employees towards the optimal performance of your system.

By choosing MAN OEM technical assistance around the globe, you reap the benefits of genuine OEM parts and expertise, reducing downtime, enabling more efficient operation and hence lowering running costs, while extending engine life and increasing productivity.

Service agreements - Focused on your service needs

When it comes to operating, maintaining or managing your equipment, MAN PrimeServ offers a wide range of service and spare parts agreements for the electric power generation, marine and offshore business sectors. Your service needs are met on all levels, from supplying spare parts or supervising overhauls, to managing complete power stations. Manage your costs with confidence. MAN PrimeServ service agreements may have different names, but they are all drawn up individually to match your individual demands and expectations, putting you in the enviable position of being able to estimate your maintenance costs in advance. Once your equipment is in the expert hands of MAN PrimeServ you can return your main focus to your core business.

Digital service solutions - Digital and human expertise

PrimeServ Assist has been developed to bring you cutting-edge service solutions, where advanced digital analytics are coupled with human expertise to effectively monitor your machinery 24/7, 365 days a year, no matter where you are. Maintenance advice and ad-hoc notifications will immediately be given to you if we detect any anomalies, all through the MAN CEON platform. With PrimeServ Assist, you are getting competent technical support proactively, straight to your PC or mobile device. This type of smart service ensures the most reliable operation of your MAN engine.

eLearning - Wherever, whenever

Properly training your technical personnel is paramount to the safe and efficient operation of your business. The MAN PrimeServ Academy Network ensures the professional qualification of your employees in

machine operation, maintenance and troubleshooting. When your employees attend any of the 13 academies located in Europe, North and South America and Asia, they will receive hands-on instruction on full-scale machinery and simulators. With expertly-trained personnel and quality machinery your business can only succeed.

In times of digitisation eLearning is needed to complement the MAN PrimeServ Academy course offering. Therefore, we are continuously developing our eAcademy. eLearning is flexible, self-paced and can be carried out any time and any place. Participants have the ability to learn at their own pace, and at times that are convenient for their personal schedule. Furthermore, they can pick and choose the content most important for their daily work, or areas where they feel they need to increase their knowledge in.

Worldwide service network

MAN PrimeServ is represented in all key markets and major ports with a large number of service centres worldwide. Our hubs are equipped with advanced technologies for repairs, and our skilled field service managers provide first class technical support for your benefit – 24/7, 365 days a year. All united in PrimeServ: an excellent network, optimised processes, technical competence, and high service-orientation.

Service workshops - More than 40 workshops around the globe

No matter where you operate there's a good chance a MAN PrimeServ workshop is nearby. More than 40 workshops around the globe carry all the tools and systems needed to conduct complete overhauls of engines, components, and auxiliary systems, including turbochargers, governors and electronic controls.

Providing you with support when the unforeseeable happens, MAN PrimeServ workshops are there to get you back in control and fast. With quick and effective response, the worldwide network ensures anything from technical support to complex repairs in the event of unexpected damage.

MAN PrimeServ HOMEPAGE

Headquarters

Germany

Four-stroke propulsion engines and systems, GenSets, turbochargers and exhaust gas systems

MAN Energy Solutions SE

Stadtbachstrasse 1 86153 Augsburg Tel.: +49 821 322 0

info-aug@man-es.com

Germany

Gas-, steam turbines, compressors

MAN Energy Solutions SE

Steinbrinkstraße 1 46145 Oberhausen Tel.: +49 208 692 1

turbomachinery@man-es.com

Denmark

Two-stroke propulsion engines and systems, GenSets

MAN Energy Solutions SE MAN B&W

Teglholmsgade 41 2450 Copenhagen SV Tel.: +45 3385 1100 info-cph@man-es.com

Denmark

Propellers, aft ship and propulsion control systems

MAN Energy Solutions SE MAN Alpha

Niels Juels Vej 15 9900 Frederikshavn Tel.: +45 9620 4100 info-frh@man-es.com

Czech Republic

Turbochargers and exhaust gas systems

PBS Turbo s.r.o.

Velká Bíteš Vlkovská 279 595 01 Velká Bíteš Tel.: +420 566 822

Tel.: +420 566 822 201 pbst_sales@pbsvb.cz

France

Mechanical and electric propulsion engines

MAN Energy Solutions France SAS

S.E.M.T. Pielstick

Avenue de Chatonay Porte nº 7 RP 427

BP 427

44615 Saint-Nazaire Tel.: +33 2 40 90 65 00 info-fr@man-es.com

Headquarters

United Kingdom

Four-stroke propulsion engines

MAN Energy Solutions UK Ltd.
Original Brands of: Mirrlees Black-

Original Brands of: Mirrlees Bl stone: Ruston and Paxman

1 Mirrless Drive Hazel Grove Stockport

Cheshire SK7 5BP

primeserv-uk@man-es.com

Sweden

Fuel gas supply systems

MAN Energy Solutions Sverige AB

MAN Cryo

Oljevägen 105 41878 Gothenburg

Tel.: +46 31 176295 cryo@man-es.com

Switzerland

Axial-, centrifugal compressors, complete compressor packages

MAN Energy Solutions Schweiz AG

Hardstraße 319 8005 Zürich

Tel. +41 44 278 20 71 info-zur@man-es.com

Argentina

MAN Energy Solutions Argentina S.A.

Armenia 3575 CP B1605BOH - Munro Prov. Buenos Aires Tel.: +54 11 5236 6006/07 guillermo.lemo@man-es.com

Australia

MAN Energy Solutions Australia Pty., Ltd.

Building 2, 202 Fairfield Road Yennora NSW 2161

Sydney

Tel.: +61 2 8874 0700 jeffrey.moloney@man-es.com

Bangladesh

MAN Energy Solutions Bangladesh Ltd.

Crystal Palace, 9th Floor SE (D) 22, Road 140

Gulshan South Avenue, Gulshan-1 Dhaka-1212

Dnaka-1212

Tel.: +880 96 12112211 atif.siddique@man-es.com

Belgium

MAN Energy Solutions Benelux N.V.

Noorderlaan 181 2030 Antwerpen Tel.: +32 3 543 8500

dirk.willems@man-es.com

Brazil

MAN Energy Solutions Brasil Ltda.

Avenida Rio Branco, nº 311, 9º andar Centro CEP 20040-009 Rio de Janeiro, RJ

Tel.: +55 21 3506 2151 jens.hueren@man-es.com

Bulgaria

MAN Energy Solutions Bulgaria EOOD

7 Al. Dyakovich, Floor 5, Office 1

9000 Varna

Tel.: +359 52 33 59 60 valentin.yankov@man-es.com

Canada

MAN Energy Solutions Canada Ltd.

1177 West Hastings Street Suite 1930 V6E-2K3 Vancouver. BC

Tel.: +1 905 842 2020 manish.jethra@man-es.com

Chile

MAN Energy Solutions Chile Ltda.

Parcela 291

- sector Placilla de Peñuelas Ruta 68 - Km. 98

Valparaíso

Tel.: +56 32 235 1500

gabriel.guevara@man-es.com

China

MAN Energy Solutions Shanghai Logistics Co.; Ltd.

Zhangjiang Hi-Tech Park, East Area, No 279 Ren Qing Road Heging - Pudong

201203 Shanghai Tel.: +86 21 3891 9600 pan.ke@man-es.com

China

MAN Energy Solutions

China
Production
Branch Office Dalian
10-6-12, North East Seven Street
Development Zone
Dalian 116600

Tel.: +86 411 3967 6780 yan.guiwang@man-es.com

China

MAN Energy Solutions Shanghai Co. Ltd.

Branch Office Guangzhou No. 828 Mao Gang Road, Huangpu District Guangzhou 510700 Tel.: +86 20 3238 7997 jane.tan@man-es.com

Colombia MAN Energy Solutions Colombia

Branch Office of Chile Av. Cra. 7 No. 127-48, Oficina 1009 Centro Empresarial 128 Bogotá D.C.

Tel.: +57 312 432 5521 juan.salguero@man-es.com

Cyprus

MAN Energy Solutions Cyprus

Office 403, Taitou Court 2M Koutsofta Str. 3031 Limassol Tel.: +357 25 342 379/746/082 hans.odgaard@man-es.com

Egypt

MAN Energy Solutions Egypt LLC

Office G19 Katameya Heights Business Center Katameya New Cairo 11771 Cairo Tel.: +20 2 20200 462 amr.tahoun@man-es.com

Ecuador

MAN Energy Solutions Ecuador

Branch office of Chile Edificio Ambar, Piso 10 Oficina

Av. Portugal E10-77 y República del Salvador Quito

Tel.: +593 233 31344 carlos.solano@man-es.com

France

MAN Energy Solutions France SAS

Bâtiment Luminis 91, rue Jean Jaurès 92800 Puteaux olivier.condemine@man-es.com

Germany

MAN Energy Solutions SE

Representative Office Rosswea 6 20457 Hamburg

Tel.: +49 40 7409 360

ruediger.schmidt@man-es.com

Greece

MAN Energy Solutions Hellas Ltd.

Akti Miaouli 89 185 38 Piraeus

Tel: +30 210 45 87 900 dionissis.christodoulopoulos@man-

es com

Guatemala

MAN Energy Solutions Guatemala Ltda.

6a. avenida 1-36 Zona 14 Edificio Plaza Los Arcos Of. 4B 01014 Guatemala City, C.A. Tel: +502 2368 2744

oscar martinez@man-es.com

Hong Kong

MAN Energy Solutions Hong Kong Ltd.

5/F, No. 1-7, Sai Tso Wan Road Tsing Yi Island, N.T.

Hong Kong SAR Tel: +852 2527 1368 jeffrey.ang@man-es.com

India

MAN Energy Solutions India Private Ltd.

E-73, MIDC Waluj 431 136 Aurangabad - 431136 Maharashtra

Tel: +91 240 2566 700 umesh.upadhve@man-es.com

India

MAN Energy Solutions India Private Ltd.

Branch Office New Delhi 407. DLF Tower-B

Jasola

New Delhi-110025 Tel.: +919 5604 32555

sandeep.chowdhury@man-es.com

Indonesia

12950 Jakarta

PT MAN Engergy Solutions Indonesia

Unit #17-01, 17th Floor Menara Jl. H.R. Rasuna Said. Block X2 Kay, 6

Tel.: +62 21 5795 7490 goetz.kassing@man-es.com

Italy

MAN Energy Solutions s.r.l.

Via Ponte Caracciolo, 1 16126 Genova

Tel.: +39 010 209 1637 marco colombo@man-es com

Japan

MAN Energy Solutions Japan Ltd.

PMO Nihonbashi Odemmacho Bldg. 5F

6-8 Nihonbashi Odemmacho Chuo-ku

Tokyo 103-0011 Tel.: +81 3 6667 2461

kimihiko.sugiura@man-es.com

Malaysia

MAN Energy Solutions Malaysia Sdn Bhd

Suite 3.01, 3rd Floor Kenanga International Jalan Sultan Ismail

50250 Kuala Lumpur, Malaysia Tel.: + 603 2162 0410 ernst.geyer@man-es.com

Mexico

MAN Energy Solutions Mexico S. de R.L. de C.V.

Sierra Candela 111-116, C.P. 11000 Col. Lomas de Chapultepec

Mexico, D.F.

Tel.: +52 1 55 1333 1906 jaime.zubillaga@man-es.com

Netherlands

MAN Energy Solutions Benelux B.V.

Schiekade 36 3125 KJ Schiedam (Port of Rotterdam) Tel.: +31 10 272 4500 dirk.willems@man-es.com

New Zealand

MAN Energy Solutions New Zealand Ltd.

Naval Dockyard PO Box 32-061 Queens Parade, Devonport Auckland 0744 Tel.: +61 2 8874 0701 jeffrey.moloney@man-es.com

Norway

MAN Energy Solutions Norge A/S

Haakon VII's gate 1

0161 Oslo

Tel.: +47 2201 7190 erik.dahl@man-es.com

Pakistan

MAN Energy Solutions Pakistan Private Ltd.

16-Km Raiwind Road Lahore-55150

Tel.: +92 42 3533 0091 3 imran.ghani@man-es.com

Panama

MAN Energy Solutions Panama Enterprises Inc

Special Economic Area Panama Pacifico 3870, Las Brujas Avenue Arraijan, Panama

Tel.: +507 236 1594

oscar.martinez@man-es.com

Peru

MAN Energy Solutions Peru S.A.C.

Av. Argentina 2415 Cercado de Lima, Lima 01

Tel.: +51 1 6284756

carlos.constante@man-es.com

Philippines

MAN Energy Solutions Philippines Inc.

Km. 17, West Service Road Cervantes Compound Brgy. Marcelo Green South Superhighway Paranague City. 1700

Tel.: +63 2 776 3369/3347 sebastien.marchand@man-es.com

Poland

MAN Energy Solutions Poland Sp. z o.o.

ul. Lubowidzka 43 80-174 Gdansk Tel.: +48 58 325 33 90 Mob:+48 502 536 800 andrzej.krupa@man-es.com

Portugal

MAN Energy Solutions Portugal, Unipessoal, Lda.

Avenida do Rio Tejo, lote 3 Parque Industrial Sapec Bay 2910-440 Setúbal Tel.: +351 265 799 500

Tel.: +351 265 799 500 antonio.penaforte@man-es.com

Qatar

MAN Energy Solutions Qatar Navigation L.L.C.

Ein Khalid Commercial Building Street 523, Watar Navigation, PO Box 153

State of Qatar, Doha Tel.: +974 4015 9150 oleb.nielsen.a@man-es.com

Russia

MAN Energy Solutions

Russia Ltd.

Preobrazhenskaya square 8, block A, 13 floor 107061 Moskow Tel.: +7 495 258 36 70

enrico.enghardt@man-es.com

Russia

MAN Energy Solutions Russia Ltd.

Branch Office St. Petersburg Vozdukhoplavatelnaya dom 19 196084 St. Petersburg

Tel.: +7 812 449 2655

alexander.danilenko@man-es.com

Saudi Arabia

MAN Energy Solutions Saudi Arabia LLC Madina Road.

Al Thinayyan Building P.O.Box: 55990

Jeddah 21544

Tel.: +966 2 639 4346

abdullah.kuzkaya@man-es.com

Senegal

MAN Energy Solutions Senegal SARL

Derrière cité Faycal En face de la clinique du Golf Cambérène

Dakar

Tel.: +221 33 867 79 77 abdou.fofana@man-es.com

Singapore

MAN Energy Solutions

Singapore Pte. Ltd. 29 Tuas Avenue 2 Singapore 639460 Tel.: +65 6349 1600 olaf.gunia@man-es.com

South Africa

MAN Energy Solutions South Africa (Pty) Ltd.

14 North Reef Road, Elandsfontein, 1406 PostNet Suite 233, Private Bag X19 Gardenview. 2047

Tel.: +27 11 842 0700 robin.watson@man-es.com

South Africa

MAN Energy Solutions South Africa (Ptv) Ltd.

Branch Office Durban Unit 1 Table Bay Industrial Park Milner Street

7405 Paarden Eiland

Durban

Tel.: +27 31 301 2999

derick.swanepoel@man-es.com

South Africa

MAN Energy Solutions South Africa (Pty) Ltd.

Branch Office Cape Town 1 Table Bay Industrial Park, Milner St.

Paarden Eiland 7405 Cape Town

Tel.: +27 21 514 3360

South Korea

MAN Energy Solutions

Korea Ltd.

54, Noksansandan 261-ro 74beongil,

GangSeo-Gu, Busan 46754

Tel.: +82 51 635 6644

tommyr.rasmussen@man-es.com

Spain

MAN Energy Solutions Espana, S.A.U.

Calle Pedro Teixeira, 8-10 Edificio Iberia Mart 28020 Madrid

Tel.: +34 91 411 1413 pablo.montes@man-es.com

Spain

MAN Energy Solutions Canarias, S.L.

Branch Office Gran Canaria Muelle Reina Sofia s/n Puerto de Las Palmas Las Palmas de Gran Canaria 35008

Tel.: +34928 935 959 pablo.montes@man-es.com

Sri Lanka

MAN Energy Solutions Lanka (Pvt) Ltd.

No. 57/8, Sir Ernest De Silva Mawatha Colombo 00700 Tel.: +94 11 2678930 karthik.nithiyanandam@man-es.

Sweden

com

MAN Energy Solutions

Sverige ABOljevägen 105
41878 Gothenburg

Tel.: +46 31 176 295 roger.goethberg@man-es.com

Taiwan

MAN Energy Solutions Taiwan Ltd.

lance.phang@man-es.com

14F-1, No. 8, Min Chuan 2nd Road Chienchen 80661 Kohsiung Tel.: +886 7 537 2225

Turkey

MAN Energy Solutions Servis ve Ticaret Ltd. Sti.

Kore Sehitleri Caddesi, Istanbloom Binasi, No: 16/1 K:4 D:41 34394 Esentepe, Zincirlikuyu, Sisli - Istanbul

Tel.: +90 2165 819 900 timur.ivi@man-es.eu

United Arab Emirates MAN Energy Solutions Middle East LLC

Jumeira Beach Road At Drydocks World Dubai P.O. Box 57091 Dubai

Tel.: +971 4 345 40 45 patrice.mauger@man-es.com

United Kingdom

MAN Energy Solutions
UK Ltd.

Hythe Hill Colchester Essex. CO1 2HW

Tel.: +44 1206 795 151 adam.green@man-es.com

United Kingdom MAN Energy Solutions UK Ltd.

Branch Office Redhill Betchworth House 57-65 Station Road Redhill

Surrey, RH 1 1 DL Tel.: +44 1737 779 429 richard.guest@man-es.com

USA

MAN Energy Solutions North America Inc.

1600A Brittmoore Road Houston, TX 77043 Tel: +1 832 209 3400

anthony.ruegger@man-es.com

USA

MAN Energy Solutions North America Inc.

Branch Office Ft. Lauderdale 551 S.W. 13th Terrace Pompano Beach, FL 33069 Tel.: +1 954 960 6700 thomas.leander@man-es.com

Vietnam

MAN Energy Solutions Singapore Pte. Ltd.

Branch Office Hanoi Unit 9, Second Floor, International Central 17 Ngo Quyen, Hoan Kiem Hanoi Tel.: +84 4 3936 9728

hoanghai.tran@man-es.com

Symbols used:

T: MAN Energy Solutions two-stroke licence F: MAN Energy Solutions four-stroke licence

FS: MAN Energy Solutions four-stroke SEMT Pielstick licence

TC: MAN Energy Solutions turbocharger licence

FP: MAN Energy Solutions fixed pitch propeller license

China, The People's Republic of

China Shipbuilding Industry Corporation Diesel Engine Co., Ltd. (T)

Tel: +86 532 86708080 6908

CNPC Jichai Power Equipment Company (F)

Tel.: +86 (531) 8742 2692 xuchuanguo@cnpc.com.cn

CSSC Marine Power Co., Ltd. (T, F)

Tel.: +86 (511) 845 11 273 cssc-cmp@cssc-cmp.cn

CSSC-MES Diesel Co., Ltd. (T)

Tel.: +86 (21) 6118 6666 market@shcmd.com.cn

Dalian Marine Diesel Co. Ltd. (T)

Tel.: +86 (411) 8441 7273 dmd@online.in.cn

Dalian Marine Propeller Co., Ltd (FP)

Tel.: +86 (411) 8444 2866 8103

sale@dmpp.cn

Hefei Rong An Power Machinery Co., Ltd. (T)

Tel.: +86 (551) 87 88888-9977

Henan Diesel Engine Industry Co., Ltd. (F)

Tel.: +86 (379) 6407 6724 cys@hnd.com.cn

Hudong Heavy Machinery Co., Ltd. (T, F, FS)

Tel.: +86 (21) 51 31 00 00 +86 (21) 58 71 30 07

hhm@hhm.com.cn

JingJiang Dingkun Machinery Co. Ltd. (T)

Tel: + 86 523 82355998

Qingdaohaixi Marine Diesel Co., Ltd. (T)

Tel.: +86 (532) 8670 8080 sales@amdltd.com.cn

Shaanxi Diesel Engine Heavy Industry Co., Ltd. (F, FS)

Tel.: +86 (29) 3831 3596 +86 (29) 3831 4380 sxd408@sxdinfo.com.cn

Shanghai Qiyao Engine Co., Ltd. (SQE) (F, TC)

Tel.: +86 (21) 3131 0648 sge-tech@csic711.com

Weichai Heavy Machinery Co., Ltd. (F)

Tel.: +86 (536) 209 8105 julidj@weichai.com

Yichang Marine Diesel Engine Co., Ltd. (T)

Tel.: +86 (717) 646 86 89 market@ymd.com.cn

Yuchai Marine Power Co. Ltd. (T)

Tel: + 86 756 5888600 sales@ycmp.com.cn

Zhenjiang Tongzhou Propeller Co., Ltd (FP)

Tel.: +86 (511) 8198 2822 zhangjinlong@zjtpp.com

Czech Republic

PBS Turbo s.r.o. (TC) Tel.: +420 (566) 822 201

India

MAN Energy Solutions India Ltd. (F)

Tel.: +91 (240) 2566 700

Japan

Hitachi Zosen Corporation (T)

Tel: +81 (3) 6404 0141 de-info@hitachizosen.co.ip

JFE Engineering Corporation (FS)

Tel: +81 (45) 505 7914

hoshino-minoru@jfe-eng.co.jp

Kawasaki Heavy Industries Ltd. (T, F, TC, FS)

Tel: +81 (3) 3435 2313

hashimoto h@khi.co.jp / takano hi@khi.co.jp

Kawasaki Sub-licensee:

The Hanshin Diesel Works Ltd. (T)

Tel: +81 (78) 332 2081

overseas-section@hanshin-dw.co.jp

Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. (F)

Tel: +81 (42) 763 1594

gmmp383621b10g04@mhiet.mhi.co.jp

Mitsui E&S Machinery Co., Ltd. (T, TC)

Tel: +81 (3) 3544 3475 meseba99@mu.mes.co.jp

Mitsui Sub-Licensee:

Makita Corporation (T)

Tel: +81 (87) 821 5501 webmaster@makita-corp.com

Mitsui Sub-Licensee:

Diesel United, Ltd. (T)

Tel: +81 (3) 3257 8222

info@du.ihi.co.jp / saburo_aiso@du.ihi.co.jp

Niigata Power Systems Co., td. (FS)

Tel: +81 (3) 4366 1200 / +81 (3) 4366 1203

webmaster1@niigata-power.com / naofumi_murakami@niigata-power.com

Diesel United, Ltd. (FS)

Tel: +81(3)3257-8222

info@du.ihi.co.jp / saburo_aiso@du.ihi.co.jp

Poland

FSA - Fabryka Silników (F)

Agregatowych i Trakcyjnych Sp z o.o.

Tel.: +48 (61) 831 1941

South Korea

HSD Engine Co., Ltd. (T, F, FS)

Tel.: +82 (55) 260 6154 sangsoo1.lee@doosan.com

Hyundai Heavy Industries Co., Ltd. (T)

Engine & Machinery Division Tel.: +82 (52) 202 7281 enginesales@hhi.co.kr

STX Engine Co., Ltd. (F, T)

Tel.: +82 (55) 280 0568 sowy@onestx.com

STX Heavy Industries Co., Ltd. (T)

Tel.: +82 (55) 280 0609

sangeui.kim@onestx.com

STX Heavy Industries Co., Ltd. (TC)

Tel.: +82 (55) 280 0715 hsk@onestx.com

Spain

Navantia S.A. (F)

Fábrica De Motores Cartagena Tel.: +34 (968) 128 200

navantia@navantia.es

USA

Fairbanks Morse Engine (F, FS)

Tel.: +1 (608) 364 8119

patrick.bussie@fairbanksmorse.com

Notes	

Notes	

Copyright 2019 © MAN Energy Solutions, branch of MAN Energy Solutions SE, Germany, registered with the Danish Business Authority under CVR No.: 31611792, (herein referred to as "MAN Energy Solutions").

This document is the product and property of MAN Energy Solutions and is protected by applicable copyright laws. Subject to modification in the interest of technical progress. Reproduction permitted provided source is given. 4510-0018-01web Apr 2019